The Solid State

EXERCISES

ELEMENTARY

Q. 1 (2)

NaCl is a ionic solid in which constituent particles are positive $\left(\mathrm{Na}^{+}\right)$and negative $\left(\mathrm{Cl}^{-}\right)$ions.
Q. 2 (4)
(4) Amorphous solids have short range order but no sharp in melting point.
Q. 3 (3)

Iodine crystals are molecular crystals, in which constituent particles are molecules having interparticle forces are Vander Waal's forces.
Q. 4 (4)

Sugar is a crystalline solid while glass, rubber and plastic are amorphous solids.

Q. 5 (1)

Amorphous solids neither have ordered arrangement (i.e. no definite shape) nor have sharp melting point like crystals, but when heated, they become pliable until they assume the properties usually related to liquids. It is therefore they are regarded as supercooled liquids.
Q. 6 (4)

Amorphous solids neither have ordered arrangement (i.e. no definite shape) nor have sharp melting point like crystals, but when heated, they become pliable until they assume the properties usually related to liquids. It is therefore they are regarded as supercooled liquids.
Q. 7 (3)
Q. 8 (4)

Due to free electrons.
Q. 9 (2)

A crystal system is hexagonal if its unit cell having $a=b \neq c$ axial ratio and $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$ axial angles.
Q. 10 (3)
(3) Rhombohedral crystal system

$$
\begin{aligned}
& a=b=c, \alpha=\beta=\gamma \neq 90^{\circ} \\
& \mathrm{ex}-\mathrm{NaNO}_{3}, \mathrm{CaSO}_{4}, \text { calcite } \mathrm{CaCO}_{3}, \mathrm{HgS}
\end{aligned}
$$

Q. 11 (2)
(2) Tetragonal system has the unit cell dimension $a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$.

Q. 12 (3)

Each unit cell of NaCl contains 4 NaCl units.

Q. 13 (1)

Face-centred cubic lattice found in KCl and NaCl .
Q. 14 (3)
(3) $A B A B \ldots \ldots$ is hexagonal close packing.
Q. 15 (2)

Co-ordination number in $H C P=12$
Co-ordination number in $M g$ is also $=12$
Q. 16 (2)

Distance between K^{+}and $F^{-}=\frac{1}{2} \times$ length of the edge
Q. 17 (3)

$$
58.5 \mathrm{~g} \mathrm{NaCl}=1 \text { mole }=6.02 \times 10^{23} \mathrm{Na}^{+} \mathrm{Cl}^{-} \text {units }
$$

One unit cell contains $4 \mathrm{Na}^{+} \mathrm{Cl}^{-}$units. Hence number of unit cell present

$$
=\frac{6.02 \times 10^{23}}{4}=1.5 \times 10^{23}
$$

Q. 18 (4)

For $b c c, d=\frac{\sqrt{3}}{2} a$ or

$$
\begin{aligned}
& a=\frac{2 d}{\sqrt{3}}=\frac{2 \times 4.52}{1.732}=5.219 \AA=522 \mathrm{pm} \\
& \begin{aligned}
& \rho= \frac{Z \times M}{a^{3} \times N_{0} \times 10^{-30}}=\frac{2 \times 39}{(522)^{3} \times\left(6.023 \times 10^{23}\right) \times 10^{-30}} \\
& \quad=0.91 \mathrm{~g} / \mathrm{cm}^{3}=910 \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
\end{aligned}
$$

Q. 19 (1)

$$
4 \mathrm{r}=\sqrt{3} \mathrm{a} \quad \mathrm{r}=\frac{\sqrt{3}}{4} \mathrm{a}
$$

Q. 20 (2)

The system $A B C A B C \ldots \ldots$ is also referred to as facecentred cubic or $f c c$.

Q. 21 (1)

$B C C$ has a coordination number of 8 .
Q. 22 (1)

For body centred cubic arrangement co-ordination number is 8 and radius ratio $\left(r_{+} / r_{-}\right)$is
0.732-1.000 .
Q. 23 (4)

Number of octahedral sites $=$ Number of sphere in the packing.
Q. 24 (2)

In ZnS structure, sulphide ions occupy all $F C C$ lattice points while Zn^{2+} ions are present in alternate tetrahedral voids.
Q. 25 (2)

Every constituent has two tetrahedral voids. In $c c p$ lattice atoms
$=8 \times \frac{1}{8}+6 \times \frac{1}{2}=4$
\therefore Tetrahedral void $=4 \times 2=8$,
Thus ratio $=4: 8:: 1: 2$.
Q. 26 (1)

$$
r=\frac{a}{2 \sqrt{2}} ; \quad r=\frac{620}{2 \sqrt{2}}=219.25 \mathrm{Pm}
$$

Q. 27 (2)

In NaCl crystal Na^{+}ions has coordination number 6.

Q. 28 (2)

$r_{+} / r_{-}=\frac{180}{187}=0.962$ which lies in the range of
$0.732-1.000$, hence co-ordination number $=8$ i.e. the structure is CsCl type.
Q. 29 (1)
Q. 30 (1)

As each Sr^{2+} ion introduces one cation vacancy, therefore concentration of cation vacancies $=\mathrm{mol}$ $\%$ of SrCl_{2} added.

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1
(C)
$\mathrm{KCl} \& \mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ are ionic solids and not pseudo solids (amorphous solids).

Q. 2 (4)

Rubber, P lastics and glass, all are amorphous solids so

Q. 3 (1)

Zns is ionic erystal
Q. 4 (1)

LiF iso an ionic crstal
Q. 5 (1)

A solid having no definite shape is called Amorphous

Q. 6 (1)

In Bravais lattices, each point has identical surroundings.
Q. 7 (1)

Refer Theory.
Q. 8 (1)

Since half of the atom is inside the unit cell.
Q. 9 (1)

In B.C.C
$4 \mathrm{r}=\mathrm{a} \sqrt{3}$
$2 \mathrm{r}=1.73$.
$2 \times 1.73=\mathrm{a} \sqrt{3}$
$\mathrm{Q}=200 \times 10^{-12} \mathrm{~m}=200 \mathrm{pm}$
Q. 10 (2)

Q. 11 (2)
$4 \mathrm{r}=\mathrm{a} \sqrt{2}$
$a=\frac{4 r}{\sqrt{2}}=\frac{4 \times 1.28}{\sqrt{2}} \AA=3.62 \AA$

Q. 12 (2)

Close packing is maximum in either face centrered or in hexagonal
Q. 13 (C)

The arrangement of sphere is shown by body diagonal plane.

Q. 14 (1)

It is a fact.
Q. 15 (1)

In a bcc an atom will be shared by only one unit cell.

Q. 16 (3)

In a face centred cubic lattice the number of nearest neighour for a given lattice point 12 .
Q. 17 (2)
$\mathrm{w}=\frac{1}{8} \times 8=1$
$\mathrm{Na}=1$
$0=12 \times 1 / 4=3$
$\Rightarrow \mathrm{NawO}_{3}$
Q. 18 (B)

Coordination no. 8 for both is possible only in Body central cubic crystal.
Q. 19 (2)
$r_{+}+r_{-}=\frac{a \sqrt{3}}{2}=\quad \frac{480 \times \sqrt{3}}{2}$
$\mathrm{r}_{+}+225=240 \sqrt{3}$
$r_{+}=240 \times 1.732-225$
$\mathrm{r}_{+}=190.68 \mathrm{pm}$
Q. 20 (1)
$r_{+}+r_{-}=\frac{a \sqrt{3}}{2}=\frac{387}{2} \sqrt{3}$
$=335.15 \mathrm{pm}$

Q. 21 (1)
for $X, 8 \times \frac{1}{8}=1$
for $\mathrm{Y}, 6 \times \frac{1}{2}$
so $A B_{3}$
Q. 22 (4)

Total body diagonal $=4$
two atoms in each body diagonal
so total number of atoms $=4 \times 2=8$
and 8 atom on each corner, So its contribution will be
$=\frac{1}{8} \times 8=1$
so total number of atoms $=8+1=9$
$\rightarrow \mathrm{Cu} \rightarrow$ ccp so 4 atoms $\rightarrow \mathrm{Ag}$ is at edge centre
each edge has its contribution $\frac{1}{4}$ so, total number of silver.
$=\frac{1}{4} \times 12=3$
$\rightarrow \mathrm{Au}$ is present at the body so its contribution will be 1 .
so formula will be
$\mathrm{Cu}_{4} \mathrm{Ag}_{3} \mathrm{Au}$.
Q. 24 (3)

There are 7 atoms at the corner.
so contribution by 7 atoms form corner will be $\frac{7}{8}$
thus $\mathrm{A}=\frac{7}{8}$
B will be at face so total contribution by it will be 3 .
$=A_{\frac{7}{8}} B_{3}$
$=\mathrm{A}_{7} \mathrm{~B}_{24}$
Q. 25 (3)
for $X, 6 \times \frac{1}{8}=\frac{3}{4}$
for $Y, 6 \times \frac{1}{2}=3$
so $X_{3 / 4} Y_{3}$ or $X_{3} Y_{12} \quad$ or X_{4}
Q. 26 (D)
for $X, 8 \times \frac{1}{8}=1$
for $Y, \quad 6 \times \frac{1}{2}=3$
so, XY_{3}
Q. 27 (1)

No. of X atom per unit cell $=7 \times \frac{1}{8}=\frac{7}{8}$
No. of Y atom per unit cell $=6 \times \frac{1}{2}=3$
\therefore Formula $=\mathrm{X}_{7 / 8} \mathrm{Y}_{3}$ or $\mathrm{X}_{7} \mathrm{Y}_{24}$.
Q. 28 (2)
$X=7 x \frac{1}{8}=\frac{7}{8} ; Y=\frac{1}{2} \times 6=3 . ; Z=\frac{1}{8} . \Rightarrow X_{7 / 8} Y_{3} Z_{1 /}$
${ }_{8}=X_{7} Y_{24} Z$
Q. 29 (B)
$\mathrm{Na}=1 \times 1=1$
$W=8 \times \frac{1}{8}=1 \Rightarrow \mathrm{NaWO}_{3}$
$\mathrm{O}=12 \times \frac{1}{4}=3$.
Q. 30 (1)

Density $=\mathrm{z} \times \frac{\mathrm{M}}{\mathrm{N}_{\mathrm{a}} \mathrm{a}^{3}}$
$1.9893=\frac{4 \times 74.5}{\mathrm{~N}_{\mathrm{a}} \times\left(6.2908 \times 10^{-8}\right)^{3}}$
No $=6.03 \times 10^{23}$
Q. 31 (1)
$P=Z \times \frac{N}{N_{a} a^{3}}$
$=\frac{2 \times 23}{6.02 \times 10^{23} \times 4.24 \times 4.24 \times 4.24 \times 10^{-24}}$
$=\frac{0.1002}{10^{-1}}=1.002 \mathrm{~g} \mathrm{~cm}^{-3}$
Q. 32 (2)

Simple cubic lattice \rightarrow B.C.C
So the Z will increase
so density will increase
Q. 33 (2)

6 face centred atom contribution $=6 \times \frac{1}{2}=3$ atom
and 3 atom
and 3 atoms are enclosed
so total number of enclosed atom in the unit cell $=3+3=6$ atom
Q. 34 (3)
$\mathrm{a}=2 \sqrt{2} \mathrm{r}$
$\therefore \mathrm{v}=\mathrm{a}^{3}=16 \sqrt{2} \mathrm{r}^{3}=16 \times \sqrt{2} \times\left(2 \times 10^{-8}\right)^{3}=$ $1.8 \times 10^{-22} \mathrm{~cm}^{3}$

Q. 35 (3)

Z is ccp so its total number 4 .
X atom occupy tetrahedral void so its total number will be 8
$\mathrm{X}_{8} \mathrm{Z}_{4}=\mathrm{X}_{2} \mathrm{Z}$
Q. 36 (3)

In ABB AABB A , there is no close packing as there are repeated planes adjacent to each other.

Q. 37 (3)

For N spheres, the number of tetrahedral holes is 2 N
Q. 38 (3)

I \& II represent octahedral holes.
Q. 39 (1)

Only force (4) tetrahedral holes are occupied in diamond.
Q. 40 (3)

No. of A atoms $=6$.
No. of C atoms $=6 \times \frac{2}{3}=4$.
\therefore Formula $=\mathrm{C}_{4} \mathrm{~A}_{6}$ or $\mathrm{C}_{2} \mathrm{~A}_{3}$.
Q. 41 (1)

No. of octahedral holes $=$ No. of close packed atoms \& No. of Tetrahedral holes $=2 \times$ No. of close packed atoms.
Q. 42 (A)
Q. 42 (1)

O is in ccp so total number of atom 4
A is occuped in $\frac{1}{6}$ of T.V. so $\frac{8}{6}$
B is occupied in $\frac{1}{3}$ of O.V so $\frac{4}{3}$
$\mathrm{A}_{\frac{8}{6}} \mathrm{~B}_{\frac{4}{3}} \mathrm{O}_{4}$
$=\begin{array}{lll}\mathrm{A}_{4} & \mathrm{~B}_{4} & \mathrm{O}_{4}\end{array}$
or ABO_{3}
Q. 44 (4)

No. of octahedral holes $=$ No. of spheres forming close packed array.
Q. 45 (1)

Refer theory.
Q. 46 (3)

Ionic solid having C.N. $=6$ cation in octahedral holes.
Hence, $0.414<\left(\frac{r+}{r-}\right)<0.732$.
Q. 47 (3)
$\frac{r_{+}}{r_{-}}=\frac{126}{216}=0.58$, octahedral voidssoC.N. $=6$.
Q. 48 (3)

Centre of edge is octehedral vold so
Q. 49 (3)

By the formation of tetrahedral void
Q. 50 (2)
$r_{a}+r_{b}=a \sqrt{3} / 4$
$4 r_{a}=a \sqrt{2}$
$\Rightarrow \frac{r_{a}+r_{b}}{r_{a}}=\sqrt{3 / 2}$
$\Rightarrow r_{b}=(\sqrt{1.5}-1) r_{a}$
$\mathrm{r}_{\mathrm{b}}=0.225 \mathrm{r}_{\mathrm{a}}$
Q. 51 (2)

$$
\mathrm{rzn}^{2+}=0.225 \mathrm{r}_{\mathrm{s}^{2-}}
$$

(from $12^{\text {th }}$ questions)
$r_{\mathrm{s}^{2-}}=\frac{\mathrm{r}_{\mathrm{zn}^{2+}}}{0.225}=\frac{22.5}{0.225}=100 \mathrm{pm}$
Q. 52 (2)

NaCl has octahredral structure
$2 \mathrm{r}_{+}+2 \mathrm{r}_{-}=\mathrm{a}$
$r_{+}+r_{-}=\frac{a}{2}$
if Fcc touches
then $4 \mathrm{r}=\mathrm{a} \sqrt{2}$
$2 r^{-}=\frac{a}{\sqrt{2}}$
$2 \mathrm{r}+=\mathrm{a}-2 \mathrm{r}^{-}=\mathrm{a}\left(1-\frac{1}{\sqrt{2}}\right)$
$2 \mathrm{r}^{+}=\frac{\mathrm{a}(\sqrt{2}-1)}{\sqrt{2}} 2 \mathrm{r}^{-}=\frac{\mathrm{a}}{\sqrt{2}}$
$\frac{r^{+}}{r^{-}}=\sqrt{2}-1, \frac{r^{+}}{r^{-}}=0.414$
so, $\frac{100}{r^{-}}=0.414$ so $\mathrm{r}-=241.5$
Q. 53 (1)
$\mathrm{a}=5.14 \AA$
structure is like NaCl
so, $4 r^{-}=a \sqrt{2}$
$r^{-}=\frac{5.14 \times 1.414}{4}$
$\mathrm{r}^{-}=1.815 \AA$
Q. 54 (4)
$\frac{r^{+}}{r^{-}}=0.414$
putting the value we get 180 pm
Q. 55 (3)

Zns - Zinc blende structure
B^{-}ions consisting the lattice so 4
A here will be 2
$\mathrm{A}_{2} \mathrm{~B}_{4}=\mathrm{AB}_{2}$.
Q. 56 (3)

CsCl has b.c.c. structure
CS^{+}will be at the centre of the cente of the and 8 Cl^{-}will occupy at the corner whch contribution will be $\frac{1}{8} \times 8=1 \mathrm{Cl}^{-}$
lhus, $1 \mathrm{CS}^{+} \& 1 \mathrm{Cl}^{-}$
Ans (3)
Q. 57 (2)

It will have the coordination number 6
Q. 58 (1)
$12 \mathrm{Na}^{+}$will find at centre of the edge and one will at centre of body
so 13 Na atoms.
Ans (1)
Q. 59 (1)

$$
\therefore 2\left(\mathrm{r}_{+}+\mathrm{r}_{-}\right)=\mathrm{a}
$$

Q. 60 (2)
C.N. of cation \& anion is six in rock salt structure.
Q. 61 (1)

It is fluorite $\left(\mathrm{CaF}_{2}\right)$ structure. Since formula is AB_{2} \Rightarrow No. of B atoms is twice the no. of A atoms. Hence B occupies all the tetrahedral voids (100%).
AB_{2} is (8 : 4) compound (Fluorite Structure Compound)
C.N. of A C.N. of B.
Q. 62 (C)

On increasing pressure, C.N. increases.
$\Rightarrow 6: 6$ changes to $8: 8$.
Q. 63 (3)
$\rho=\frac{\mathrm{zM}}{\mathrm{N}_{\mathrm{A}} \cdot \mathrm{a}^{3}} \Rightarrow 3.18=\frac{4 \times 78}{\mathrm{~N}_{\mathrm{A}} \cdot \mathrm{a}^{3}}$
$\Rightarrow \mathrm{a}^{3}=16.3 \times 10^{-23}$
$\Rightarrow \mathrm{a}=5.46 \times 10^{-8} \mathrm{~cm}$
$=546 \times 10^{-10} \mathrm{~cm}$
$\mathrm{a}=546 \times 10^{-12} \mathrm{~m}$
$=546 \mathrm{pm}$
Q. 64 (3)
$\mathrm{CaF}_{2}=$ For cation $=8$

$$
\text { Anino }=4
$$

$\mathrm{CsCl}=$ for cation $=8$
Anion $=8$
Q. 65 (B)

On increasing temp ${ }^{\mathrm{r}} \mathrm{C} . \mathrm{N}$. decreases.
$\therefore \mathrm{CsCl}(8: 8)$ structure changes into $(6: 6) \mathrm{NaCl}$ type structure.
Q. 66 (2)

Radius Ratio $\frac{r_{R b_{+}}}{r_{1^{-}}}=\frac{1.46}{2.16}=0.68 \Rightarrow$ between 0.414

$$
\& 0.732
$$

Hence Rock salt (NaCl) structure.

Q. 67 (4)

In rock salt structure Na^{+}occupy octahedral void \& tetrahedral voids are vacant
Q. 68 (4)

Four corner atoms \& Eight other face central atoms $=12$ for face atom
\& 12 (all for face) w.r.to corner
Q. 69 (2)
SrCl_{2} is AB_{2} type in which cation is of large size.
Q. 70 (4)

There are 12 next nearest neighbour of Na^{+}each for each center octahedral void
Q. 71 (4) for comparable size of anion 8 cation
$\mathrm{r}_{\mathrm{cs}}{ }^{+} \xlongequal{=} \mathrm{r}_{\mathrm{Cl}^{-}}$
Q. 72 (4)
(II) $\frac{r_{+}}{r_{-}}=\frac{0.2}{0.95}=0.21$
coordination no. $=3$
(I) True
(II) False
(III) True
(IV) False
Q. 73 (4)

Schottky defect noticed in all
Q. 74 (2)

The structure of sodium chloride crystal is F.C.C.
Q. 75 (B)

Equal no. of $\mathrm{Na}^{+} \& \mathrm{Cl}^{-}$are missing completely, \Rightarrow Schottky defect.
Q. 76 (2)

See Sol. E-8.
Q. 77 (1)

Refer theory.
Q. 78 (2)

Since Ag^{+}(cation) is smaller than Cl^{-}(anion) \& hence cation is present in voids.

In CaF_{2}, $\mathrm{F}_{\text {anion }}^{-}$is smaller.
Q. 79 (1)

Ions are displaced from one place to another.

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1 (C)

Grey Cast Iron is metallic solid.

Q. $2 \quad$ (B)

$\mathrm{P}=\frac{8 \times \frac{4}{3} \pi \mathrm{R}^{3}}{(4 \mathrm{R})^{3}}=\frac{8 \times 4 \times \pi \mathrm{R}^{3}}{3 \times 64 \times \mathrm{R}^{3}}=\frac{\pi}{6}=\frac{22}{7 \times 6}=\frac{11}{21}$

No. of Octahedral voids $=1 \times 1=1$ (at body center).
Q. 3 (C)

$\mathrm{de}=\mathrm{a}$
$\mathrm{d}_{\mathrm{fd}}=\sqrt{2} \mathrm{a}$
$d_{b d}=\frac{\sqrt{3} a}{2}$
$\therefore \mathrm{d}_{\mathrm{fd}}>\mathrm{d}_{\mathrm{e}}>\mathrm{d}_{\mathrm{bd}}$
Q. 4 (B)
$d_{1-2}=\frac{\sqrt{2} a}{2}=\frac{a}{\sqrt{2}} ; d_{2-3}=\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}=\frac{a}{\sqrt{2}}$
Hence $d_{1-2}=d_{2-3}$.
Q. 5 (D)

Common Volume $=\left(\frac{a}{2}\right)^{3}=\frac{a^{3}}{8}$
$\left[\therefore\right.$ Common vol is a cube of edge length $\frac{a}{2}$]
Q. 6 (A)

(T) Tringular Voids

2 Square Voids
Q. 7 (C)

$\&$ body center.
(T) \rightarrow Tetrahedral voids on body diagonal.
Q. 8 (A)

No. of tetrahedral voids $=8 \times \frac{1}{8}=1$

Q. 9 (B)

$\mathrm{Cu}_{4} \mathrm{Ag}_{3}$
$\downarrow \downarrow$

Au

Froms c.c.p., $\frac{3}{8}{ }^{\text {th }}$ of tetrahedral voids , $\frac{1}{4}$ of
Octahedral voids $[\therefore$ No. of O- voids $=4]$
$\mathrm{z}=4$
$[\therefore$ No. of T- voids $=8]$.
Q. 10 (A)

Q. 11 (A)

Refer theory octahedral \& tetrahedral voids about positions of ...

Q. 12 (B)

Only tetrahedral, Since there is one tetrahedral voids just above the atom \& one just below the atom.
Q. 13 (D)

Total positive charge $=$ Charge on $\mathrm{Mg}^{2+}+$ Charge on Al^{3+}
$=\frac{1}{8} \times 8 \times 2+\frac{1}{2} \times 4 \times 3=8$ electronic charge.
Q. 14 (D)

Coordination no. of cation $=6$ coordination no of anion $=6$

Q. 15 (A)

 Refer NaCl (Rock salt structure).Q. 16 (C)
$\mathrm{Z}=4, \mathrm{M}=60$
60×4 gram
-6.023×10^{23} unit cells
1 gram
$-\quad \frac{6.02 \times 10^{23}}{60 \times 4}=2.5 \times 10^{21}$
Q. 17 (C)

Some of O^{2-} combine with each other forming O_{2} gas which is liberated learning behind electrons at the site vacated by oxide ions.
Q. 18 (D)

\Rightarrow Applying charge balance, $2 \mathrm{y}+3(\mathrm{x}-\mathrm{y})-2=0$ $\Rightarrow \mathrm{y}=3 \mathrm{x}-2$

$$
\begin{aligned}
\therefore & \frac{M^{3+}}{M^{2+}}=\frac{x-y}{y}=\frac{x-(3 x-2)}{3 x-2} \\
& =\frac{(-2 x+2)}{3 x-2}=\frac{2(1-x)}{(3 x-2)}
\end{aligned}
$$

JEE-ADVANCED
 MCQ/COMPREHENSION/MATCHING

Q. 1 (A,B,C,D)

(A) $6 \mathrm{Cs}^{+}$ion second nearest neighbour
(B)

(C) $\frac{r_{+}}{r_{-}}=0.75$ (BCC) $8:$ coordination no. (D) True
Q. 2 (A,C,D)
$\mathrm{r}_{+}+\mathrm{r}_{-}=\mathrm{a} / 2$
$(95+181)=\mathrm{a} / 2$
$\Rightarrow \mathrm{a}=276 \times 2$
$\mathrm{a}=552 \mathrm{pm}$
Q. 3 (A,C)
$\mathrm{M}^{+2} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{4}{ }^{-2}$
it will be ferrite and ferrimagnetic substance
Q. 4 (A,B,C)

These are facts.

Q. 5 (A,B,C)

$\mathrm{Na}^{+} \& \mathrm{~F}^{-}$are isoelectronic hence they will have same screening const (s) but not the effective nuclear charge.
and $\mathrm{r}_{\mathrm{Na}^{+}}+\mathrm{r}_{\mathrm{F}^{-}}=2.31 \AA$ and $\mathrm{r}_{\mathrm{F}^{-}}=1.36 \AA$
$\therefore \mathrm{r}_{\mathrm{Na}^{+}} / \mathrm{r}_{\mathrm{F}^{-}} \approx 0.7 \quad$ (coordination $=6$, rock
salt structure)

Q. 6 (A,B,C)

These are facts.
Q. 7 (A,B,D)

Schottky defect is only observed in ionic compound.
Q. 8 (A,B,C)

Randomness (entropy) in amorphous solids is more than that in crystalline solids.
Q. 9 (B,C)

Fcc can be viewed in two following ways -
(i) Planes along the faces (and parallel to it) of the unit cell.
\Rightarrow Each atom touches 4 in same layer, 4 in layer above and 4 in layer bellow it.
(ii) Planes along closest packed spheres \rightarrow each atom touches 6 atom in same layer, 3 in layer above and 3 in layer below it.

Comprehension \# 1 (Q. No. 10 to 25)

Q. 10 (B)
Q. 11 (A)
Q. 12 (C)

10 In FCC lattice each edge center act as octahedral void.

11 No. of $X=8 \times \frac{1}{8}+6 \times \frac{1}{2}=4 \Rightarrow 4 X Y$ unit per cell.
No. of $Y=1+12 \times \frac{1}{4}=4$

12 At edge center, there is octahedral void in f.c.c. lattice.
\Rightarrow C.N. of $Y=6$
(6:6) C.N. $\Rightarrow \mathrm{NaCl}$ Structure.

Comprehension \# 2 (Q. No. 13 to 16)
Q. 13 (D)

Q. 14 (C)

Q. 15 (D)
Q. 16 (D)

13 H C P
Pacling efficlency $=74 \%$
empty space $=100-74 \%$
ES=26\%
14 In any structure if number of atom is Z so no. of tetrahedral voids $=2 \mathrm{Z}$
in $\operatorname{ccp} \mathrm{Z}=4$
so letrahedral void $=8$
so ratio $=\frac{4}{8}=\frac{1}{2}=\frac{0.5}{1}$
15 For B.C.C.
$\frac{r+}{r-}=0.732-1$
for octahedral.
$\frac{r+}{r-}=0.414-0.732$
for tetrahedral
$\frac{r+}{r-}=0.225-0.414$
so, cubic > octahedral > tetrahedral
16 M-H.C.P= 6
O^{-2} at octahedral void $=\frac{2}{3} \times 6=4$
$\mathrm{M}_{6} \mathrm{O}_{4}$
$\mathrm{M}_{3} \mathrm{O}_{2}$

Comprehension \# 3 (Q. No. 17 to 20)

Q. 17 (C)
Q. 18 (B)
Q. 19 (A)
Q. 20 (C)

17 Some Cl^{-}ions leave the lattice and combine with Li vapour to release electron, which is trapped into the anion vacancy giving rise to metal excess defect Cl^{-}

$$
+\mathrm{Li}_{(\mathrm{g})} \longrightarrow \mathrm{LiCl}_{(\mathrm{s})}+\mathrm{e}^{-}
$$

18 On heating, $\mathrm{ZnO}_{(\mathrm{s})}$ dissociates reversibly as $\mathrm{ZnO} \rightleftharpoons$
$\mathrm{Zn}^{2+}+\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{e}^{-}$
Zn^{2+} ions occupy certain interstitial sites whereas the electrons released are present at the neighbouring sites, which act as F-centers.

19 In the crystallization, some Ag^{+}ions will get replaced by as many half of Cd^{2+} ions. Thus the cation vacancies will be the same as the number of Cd^{2+} is ions incorporated.

2 AgBr can show both shottky and frenkel defect.

Comprehension \# 4 (Q. No. 21 to 24)

Q. 21 (B)
Q. 22 (C)
Q. 23 (A)
Q. 24 (D)

21 Number of defects per mole of $\mathrm{NaCl}=\left(6.02 \times 10^{23}\right.$ formula units) $=\frac{1 \times 6.02 \times 10^{23}}{10^{15}}=6.02 \times 10^{8}$

22 Refer theory
$23 \quad 3 \mathrm{x}+(0.93-\mathrm{x}) \times 2=2$
$\mathrm{x}=0.14$
$\%$ of Fe as $\mathrm{Fe}(\mathrm{III})=\frac{0.14}{0.93} \times 100=15 \%$
24 At room temperature, thermal energy causes some electrons of the $\mathrm{Si}-\mathrm{Si}$ bonds to leave. The electron deficient bond becomes a positive hole. Both the positive holes and electrons released account for the conduction of electricity.
Q. 25 (i) - (e) ; (ii) - (b) ; (iii) - (c) ; (iv) - (a) ; (v) - (d) Refer theory

Q26 (A)- $\mathrm{s}, \mathrm{r} ;$ (B) - s, r; (C) - p ; (D) - q
Refer theory
Q. 27
$\begin{aligned} & \text { (A)-p,q,r,s ;(B)-p,r,s } \\ & \text { (A) } \mathrm{ZnS} \text { crystal } \longrightarrow \\ & \longrightarrow \text {;(C)-p,s; (D)-p,r,s } \\ & \text { Zinc blende } \rightarrow \text { fcc } \\ & \text { Wurtzite } \rightarrow \text { hcp }\end{aligned}$
S^{2-} ion are present in fcc lattice \& Zn^{2+} ion occupy all
the tetrahedral voids distance of tetrahedral voids
from corner $=\frac{\sqrt{3} a}{4}$
(B) $\mathrm{CaF}_{2} \rightarrow$ Fluorite structure
Ca^{2+} ion are present in ccp lattice \& F^{-}ion are present in all tetrahedral voids.
(C) $\mathrm{NaCl} \rightarrow$ Rock salt Type structure
Cl^{-}ion are present in ccp lattice \& Na^{+}ion occupy all the octahedral voids.
(D) Diamond crystal $\rightarrow \mathrm{C}$ atom present in fcc lattice in which alternate tetrahedral voids are occupied by C atom.

NUMERICAL VALUE BASED

Q. 1 [2]
$8 \times \frac{1}{8}+2 \times \frac{1}{2}=2$
Q. 2 [6]
Q. 3 [4]
fcc arrangement
Q. 4 [6]
Q. 5 [4]
$\mathrm{n}=\frac{\mathrm{d} \times \mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}{\mathrm{~A}}=\frac{10.6 \times 6.023 \times 10^{23} \times\left(408 \times 10^{-10}\right)^{3}}{108}=4$

Q. 6 [2]

Effective number of atoms of
$X=4-4 \times \frac{1}{8}=3.5$
Effective number of atoms of $Y=4-1=3$
Effective number of atoms of $Z=8-4=4$
Ans $: \frac{3+4}{7 / 2}=2$
Q. 7 [8]
Q. 8 [0125]
Q. 9 [6]
$\frac{\mathrm{r}^{+}}{\mathrm{r}^{-}}=\frac{88}{200}=0.44$
so CN is 6 .

KVPY

PREVIOUS YEAR'S

Q. 1 (C)

From Bragg's equation
$\mathrm{n} \lambda=2 \mathrm{~d} \sin \theta$
$\mathrm{d}=\lambda, \mathrm{n}=1$
$1 \times \lambda=2 \times \lambda \sin \theta$
$\sin \theta=\frac{1}{2}$
$\theta=30^{\circ}$
Q. 2 (2)
$\mathrm{d}_{\mathrm{hkl}}=\frac{\mathrm{a}}{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}}$
$=\frac{450}{\sqrt{4+4+1}}=\frac{450}{\sqrt{9}}=150 \mathrm{pm}$
Q. 3 (C)
Q. 4 (B)

	\underline{Z}
Y	4
M	2

Q. 5 (C)
$\mathrm{r}_{\mathrm{k}^{+}}+\mathrm{r}_{\mathrm{Cl}^{-}}=\frac{\mathrm{a}}{2}$
$133+181=\frac{\mathrm{a}}{2}$
$\mathrm{a}=2(133+181)$
$\mathrm{a}=628 \mathrm{pm}$
or $a=628 \times 10^{-10} \mathrm{~cm}$
and
volume $=\mathrm{a}^{3}=\left(6.28 \times 10^{-8}\right)^{3} \mathrm{~cm}^{3}$
$=2.4767 \times 10^{-22} \mathrm{~cm}^{3}$
$\approx 2.48 \times 10^{-22} \mathrm{~cm}^{3}$
Q. 6 (A)

Corner $\Rightarrow \frac{1}{8}$
Face $\Rightarrow \frac{1}{2}$
Q. 7 (A)

By definition
Q. 8 (A)

	FCC	BCC	SC
η	74%	68%	52.4%

order $\mathrm{FCC}>\mathrm{BCC}>\mathrm{SC}$
Q. 9 (D)

No. of F^{-}will be equal to eight since for one Ca^{+2} there should be two F^{-}ion.
Q. 10 (C)
$\mathrm{d}=\frac{\mathrm{N} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}$
$8.93=\frac{4 \times 63.5}{6.023 \times 10^{23} \times \mathrm{a}^{3}}$
$\mathrm{a}^{3}=4.72 \times 10^{-23}$
$\mathrm{a}=\left(47.2 \times 10^{-24}\right)^{1 / 3}$
$=3.61 \times 10^{-8} \mathrm{~cm}$
$=3.61 \times 10^{-10} \mathrm{~m}$
$=361 \mathrm{pm}$
$\mathrm{a}=2 \sqrt{2} \mathrm{r}$
$\mathrm{r}=\frac{\mathrm{a}}{2 \sqrt{2}}=127.8$

Q. 11 (B)

No. of O^{-2} per unit cell $=8 \times \frac{1}{8}+6 \times \frac{1}{2}=4$
No. of Al^{3+} per unit cell $=4 \times \frac{1}{2}=2$
No. of Mn^{2+} per unit cell $=8 \times \frac{1}{8}=1$
$\mathrm{MnAl}_{2} \mathrm{O}_{4}$

Q. 12 (A)

The unit cell of the above pattern will consist of 8 white square and 1 black square i.e. it will form centre unit cell.
\therefore No. of white square $\mathrm{Y}=8$
No. of black square $\mathrm{X}=1$
\therefore Formula XY_{8}
Q. 13 (C)
$\mathrm{Z}=6$ [in hcp packing]
$\mathrm{X}=12$ [in tetra hedral void]
So formula $\mathrm{X}_{2} \mathrm{Z}$
Q. 14 (B)

Ionic solid is an insulator in solid state but conducts electricity in molten state.

Area of rectangle $=x y$

$$
=2 \mathrm{a}(2 \mathrm{a}+2 \mathrm{~b})
$$

$$
=4 a(a+b)
$$

Area covered by circles $=\pi \mathrm{a}^{2}+\pi \mathrm{b}^{2}=\pi\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$
Packing fraction (P.F.) $=\frac{\pi\left(a^{2}+b^{2}\right)}{4\left(a^{2}+a b\right)}$
$=\frac{\pi a^{2}\left(1+\frac{b^{2}}{a^{2}}\right)}{4 a^{2}\left(1+\frac{b}{a}\right)}$

Putting $\mathrm{r}=\left(\frac{\mathrm{b}}{\mathrm{a}}\right)$
P.F. $=\frac{\pi\left(1+\mathrm{r}^{2}\right)}{4(1+\mathrm{r})}$

For minimum P.F., $\frac{\mathrm{d}(\text { P.F. })}{\mathrm{dr}}=0$
or $\frac{\pi}{4}\left[\frac{2 r(1+r)-\left(1+r^{2}\right)}{(1+r)^{2}}\right]=0$
$\Rightarrow \mathrm{r}^{2}+2 \mathrm{r}-1=0$
or $\mathrm{r}=\frac{-2+\sqrt{4+4}}{2}=\sqrt{2}-1=0.414$
Answer is option (A)

Q. 16 (B)

Number of atoms of element ' N ' per unit cell $=6$
Number of atoms of element M per unit cell $=\frac{2}{3}$
(Number of octahedral voids per unit cell)
$=\frac{2}{3} \times 6=4$
$\mathrm{M}: \mathrm{N}=4: 6=2: 3$
Formula is $\mathrm{M}_{2} \mathrm{~N}_{3}$
Q. 15 (A)

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 [8]

$$
\begin{aligned}
& \mathrm{d}=\frac{\mathrm{Z} \times \text { At.Mass }}{\mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}}=\frac{4 \times 63.54}{\left(3.69 \times 10^{-8}\right)^{3} \times 6.022 \times 10^{23}} \\
& =8.4 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Q. 2 [1]

Effective number of octahedral void in FCC lattice $=$ 4

Effective number of lattice point in $\mathrm{FCC}=4$
Q. 3 [8]

Theory
Q. 4 (4)

Covalent or network solid have very high melting point and they are insulators in their solid and molten form.
Q. 5 (2)
$\mathrm{M}_{12 \times \frac{2}{3}} \mathrm{~A}_{6}$
$\mathrm{M}_{8} \mathrm{~A}_{6}$
$\mathrm{M}_{4} \mathrm{~A}_{3}$

Q. 6 [5]

1 mole $\operatorname{KBr}(=119 \mathrm{gm})$ have moles SrBr 2 and hence, $10-7$ moles cation vacancy
(as $1 \mathrm{Sr} 2+$ will result 1 cation vacancy)
\therefore Required number of cation vacancies
$=5 \times 1014$

Q. 7 [15]

HCP structure : Per atom, there will be one octahedral void (OV) and two tetrahedral voids (TV).
Therefore total three voids per atom are present in HCP structure.
\rightarrow therefore total no of atoms of Ga will be-

$$
\frac{\text { Mass }}{\text { MolarMass }} \times \mathrm{N}_{\mathrm{A}}=\frac{0.581 \mathrm{~g}}{70 \mathrm{~g} / \mathrm{mol}} \times 6.023 \times 10^{23}
$$

\rightarrow Now, total Number of voids $=3 \times$ total no. of atoms

$$
\begin{aligned}
& =3 \frac{0.581}{70} 6.02310^{23}=14.99 \times 10^{21} \\
& \simeq 15 \times 10^{21}
\end{aligned}
$$

Q. 8 [33]

For BCC $\sqrt{3} a=4 r$
so $\quad r=\frac{\sqrt{3}}{4} \times 27$
for FCC $\quad a=2 \sqrt{2} r$
$=2 \times \sqrt{2} \times \frac{\sqrt{3}}{4} \times 27$
$=\frac{\sqrt{3}}{\sqrt{2}} \times 27=33$
Q. 9 (4)
Q. 10 (3)
Q. 11 [106]
Q. 12 [8]
Q. 13 (3)
Q. 14 [1]

JEE-ADVANCED
PREVIOUS YEAR'S

Q. 1 [D]

$4 \mathrm{R}=\mathrm{L} \sqrt{2}$
so, $L=2 \sqrt{2} R$
Area of square unit cell $=(2 \sqrt{2} R)^{2}=8 R^{2}$
Area of atoms present in one unit cell $=\pi \mathrm{R}^{2}+$
$4\left(\frac{\pi R^{2}}{4}\right)=2 \pi R^{2}$
so, packing efficiency $=\frac{2 \pi R^{2}}{8 R^{2}} \times 100=\frac{\pi}{4} \times 100=$

$$
78.54 \%
$$

Q. 2 [8]

Q. 3 (B)

No. of M atoms $=\frac{1}{4} \times 4+1=1+1=2$
No. of X atoms $=\frac{1}{2} \times 6+\frac{1}{8} \times 8=3+1=4$
so formula $=\mathrm{M}_{2} \mathrm{X}_{4}=\mathrm{MX}_{2}$
Q. 4 (A)

The given arrangement is octahedral void arrangement.
$\rightarrow \frac{r_{A}^{+}}{r_{x^{-}}} \geq 0.414 \Rightarrow r_{A}^{+} \geq 0.414 \times 250$
$r_{\mathrm{A}}^{+} \geq 103.5 \mathrm{pm}$.
$\& \frac{r_{A}^{+}}{r_{A}^{-}}<0.732 \quad \Rightarrow r_{A}^{+}<183 \mathrm{pm}$
So, we have to choose from 104 pm and 125 pm . As no other information is given, we consider exact fit, and hence 104 pm is considered as answer.
Q. 5 (A)

In ccp, O^{2-} ions are 4.
Hence total negative charge $=-8$
Let Al^{3+} ions be x , and Mg^{2+} ions be y .
Total positve charge $=3 \mathrm{x}+2 \mathrm{y}$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{y}=8$
This relation is satisfied only by $\mathrm{x}=2$ and $\mathrm{y}=1$.
Hence number of $\mathrm{Al}^{3+}=2$.
and number of $\mathrm{Mg}^{2+}=1$.
$\Rightarrow \mathrm{n}=$ fraction of octahedral holes occupied by Al^{3+}

$$
=\frac{2}{4}=\frac{1}{2}
$$

and $m=$ fraction of tetrahedral holes occupied by Mg^{2+}

$$
=\frac{1}{8}
$$

Hence, answer is (A)
Q. 6 (BCD)
Q. 7 [2]

$$
\mathrm{d}=\frac{\mathrm{Z} \times \frac{\mathrm{M}_{0}}{\mathrm{~N}_{\mathrm{A}}}}{\mathrm{a}^{3}}
$$

$$
8=\frac{4 \times \frac{\mathrm{M}_{0}}{6 \times 10^{23}}}{\left(4 \times 10^{-10}\right)^{3}}
$$

$$
\mathrm{M}_{0}=\frac{1}{8 \times 6 \times 1.6}
$$

Number of moles in $256 \mathrm{~g}=\frac{256}{8 \times 6 \times 1.6}=\frac{10}{3}$
Number of atoms $=\frac{10}{3} \times 6 \times 10^{23}=2 \times 10^{24}$
Q. 8 (3)
$\mathrm{X}^{-} \Rightarrow$ O.V.
$\mathrm{M}^{+} \Rightarrow \mathrm{FCC}$

$\quad \mathrm{M}^{+}$	X^{-}
(i) 4	1
(ii) $4-3$	$3+1$
(iii) $4-3-1$	$3+1$
(iv) 1	3

$\mathrm{Z}=\frac{3}{1}=3$
Q. 9 (A,C)
(A) $\mathrm{Z}_{\mathrm{M}}=2 \times \frac{1}{2}=1$
$Z_{X}=4 \times \frac{1}{4}=1$
\therefore Empirical formula is MX
(B) Coordinate numbers of both M and X is 8 .

(C) Bond length of $\mathrm{M}-\mathrm{X}$ bond
$=\mathrm{AB}=\sqrt{3} \cdot \frac{\mathrm{a}}{2}=0.866 \mathrm{ba}$
(D) $r_{M}: r_{x}=(\sqrt{3}-1): 1=0.732: 1.000$
Q. 10 (B)

Paking fraction (P.E.) $=\frac{1 \times \frac{4}{3} \pi r^{3}+3 \times \frac{4}{3} \pi r_{+}^{3}}{a^{3}}$
$\frac{\mathrm{r}_{+}}{\mathrm{r}_{-}}=0.414$ (square planar void), $\mathrm{a}=2 \mathrm{r}_{-}$
We get, P.E. $=\frac{\frac{4}{3} \pi\left(\mathrm{r}_{-}^{3}+3 \mathrm{r}_{+}^{3}\right)}{8 \mathrm{r}_{-}^{3}}$
$=\left[\frac{\pi}{6}(1+3(0.414))\right]=0.63$

Solutions

ELEMENTARY

EXERCISES

Q. 1
Q. 2 (2)

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\frac{w}{40}=\frac{12.2}{122}=4 \mathrm{gms} .
$$

Q. 3 (2)

$$
\frac{X}{X+\frac{1000}{78}}=0.2
$$

Q. 4 (1)
Q. 5 (3)
Q. 6 (3)
Q. 7 (3)
Q. 8 (4)
Q. 9 (3)
Q. 10 (3)
Q. 11 (4)
Q. 12 (1)

For the ideal solution $\Delta H_{\text {mix }}$ and $\Delta V_{\text {mix }}=0$.
Q. 13 (3)
Q. 14 (1) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ dissociates as $4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$, thus 1 molecule dissociates into five particles in the similar way $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ also gives five particles per molecule.
Q. 15 (2)
Q. 16 (2)
Q. 17 (2)
Q. 18 (1)
$m=\frac{K_{b} \times w \times 1000}{\Delta T_{b} \times W}=\frac{2.16 \times 0.15 \times 1000}{0.216 \times 15}=100$.
Q. 20 (2)
Q. 21 (1)
$\Delta T_{f}=1.86 \times\left(\frac{342}{342}\right)=1.86^{\circ} ; \therefore T_{f}=-1.86^{\circ} \mathrm{C}$.
Q. 22 (1)

By using, $m=\frac{K_{f} \times 1000 \times w}{\Delta T_{f} \times W_{\text {Solvent }}(g m)}=\frac{5.12 \times 1000 \times 1}{0.40 \times 50}$

$$
=256 \mathrm{gm} / \mathrm{mol}
$$

Hence, molecular mass of the solute $=256 \mathrm{gm} \mathrm{mol}^{-1}$
Q. 23 (2)

Isotonic solution $=\frac{w_{1}}{m_{1} V_{1}}=\frac{w_{2}}{m_{2} V_{2}}$ $=\frac{w_{1}}{342 \times 1}=\frac{6}{60 \times 1}=\frac{342 \times 6}{60}=34.2$.
Q. 24 (4)

$$
P=C R T \text { or } \frac{P}{C}=R T
$$

Q. 25 (3)

$$
\pi=C R T=0.2 \times 0.0821 \times 293=4.81 \mathrm{~atm} .
$$

Q. 26 (2)

Equal osmotic pressure only applicable of nonelectrolytes solution at low concentration.
Q. 27 (3)

Vapour pressure is not colligative property.
Q. 28 (1)
Q. 29 (3)
BaCl_{2} gives maximum ion. Hence, its shows highest boiling point.
Q. 30 (1)

NaCl contain highest boiling point than other's compound.
Q. 31 (1)

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1
(3)

Mole of $\mathrm{H}_{2} \mathrm{O}=\frac{36}{18}=2$
Mole of glycerine $=\frac{46}{92}=0.5$
total mole $=2+0.5=2.5$
Mole fractions of glycerine $=\frac{n_{1}}{n_{1}+n_{2}}=\frac{0.5}{2.5}$
$\mathrm{X}_{0}=0.2$ Ans.
Q. 2 (3)

Osmosis is a process in which solvent (water in this case) flows from low conc ${ }^{\mathrm{n}}$ sol $^{\mathrm{n}}$ to high concentration through SPM.
Q. 3 (2)
Q. 4 (D)

18 gm of glucose means 0.1 mole of glucose as it present in 1000 gm of solvent
so it is 0.1 mole
Q. 5 (3)

As we know
molarity $=\frac{10 x d}{\text { molmt }}$
x is \% by wt.
d is the density
by putting their value we get
18.4 M
Q. 6 (4)

Molality of $\mathrm{BaCl}_{2}=0.1 \times 0.25=0.025$
by calculation we get the values of (D)
Q. 7 (3)

Mole of $\mathrm{HCl}=25 \times 3+75 \times 0.05$
$=75+3.75=78.75$
$\mathrm{M}=\frac{78.75}{100}=.7875$
Q. $8 \quad$ (2)

$$
\left[\mathrm{Cl}^{-}\right]=0.2+\frac{0.2+0.1 \times 2}{0.5}=0.8
$$

Q. 9 (2)
$\frac{5.0 \mathrm{gm}}{10^{6} \mathrm{gm}}$ of solutions
so concentration of solution $=5 \mathrm{ppm}$
Q. 10 (D)

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{3}
$$

Q. 11 (A)

$\mathrm{CHCl}_{6}+\mathrm{CHCOCH}_{3}$
Q. 12 (A)
Q. 13 (B)
Q. 14 (3)
$\mathrm{P}=120-75 \times \mathrm{B}$
If
$X_{B}=1$
$P_{B}^{0}=120-70=45 \mathrm{~mm} \mathrm{Hg}$
If $X_{B}=120-75=45 \mathrm{mmHg}$
if $X_{B}=0 \mathrm{Ps}=P_{A}^{0}$
$P_{A}^{0}=120 \mathrm{mmHg}$
thus answer will be (3)
Q. 15 (3)
V.P. depends on temperature.
Q. 16 (2)

Non volatile substance has no V.P.
Q. 17 (4)

$$
\mathrm{P}_{\mathrm{N}_{2}}+\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}(\mathrm{v})}=1 \mathrm{~atm}, \quad \because \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=0.3 \mathrm{~atm}
$$

$\therefore \mathrm{P}_{\mathrm{N}_{2}}=0.7 \mathrm{~atm}$
Now new pressure of N_{2} in another vessel of volume $\mathrm{V} / 3$ at same T is given by :

$$
\mathrm{P}_{\mathrm{N}_{2}} \times \frac{\mathrm{V}_{1}}{3}=0.70 \times \mathrm{V}_{1}
$$

$$
\therefore \mathrm{P}_{\mathrm{N}_{2}}=2.1 \mathrm{~atm}
$$

Since aqueous tension remains constant, and thus total pressure in new vessel.

$$
=\mathrm{P}_{\mathrm{N}_{2}}+\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=2.1+0.3=2.4 \mathrm{~atm}
$$

Q. 18 (C)

Pressure of air $=750-100=650 \mathrm{~mm}$ of Hg
on compressing $\mathrm{P}_{\mathrm{f}}=\mathrm{Hg} 650 \times 3 \mathrm{~mm}$ of Hg
$=1950 \mathrm{~mm}$ of Hg
so $\mathrm{P}_{\mathrm{T}}=(1950+100)=2050 \mathrm{~mm}$ of Hg
Q. 19 (3)

$$
\frac{\mathrm{P}^{0}-\mathrm{Ps}}{\mathrm{P}^{0}}=0.2
$$

As we know relative lowering of v.p. is equal to the mole fraction of the solute so (I) is correct it doesn't depend upon the number of moles so (II) is wrong mole fraction of solvent will be 0.8 so number of moles of solvent will be 4 so (III) will be correct,
(IV) will be also wrong so I \& III will be correct so answer (3)
Q. 20 (2)

Acc. of Rault's law $\quad P=P_{A}+P_{B}$ for non volatile solute $=P_{B}=0$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{s}}=\mathrm{P}_{\hat{\partial}} \\
& \mathrm{P}_{\mathrm{s}}=\mathrm{P}_{\mathrm{A}} \mathrm{X}_{\mathrm{A}} \quad \mathrm{X}_{\mathrm{A}}=\text { mole fractions of }
\end{aligned}
$$

solvent $=\mathrm{N}_{1}$
so $\quad \mathrm{P}=\mathrm{P}_{0} \mathrm{~N}_{1}$
$\mathrm{P}_{\mathrm{A}}^{0}=\mathrm{P}_{0}$.
Q. 21 (C)
$y_{A}>x_{A} \Rightarrow \frac{1}{y_{A}}<\frac{1}{x_{A}}$
$\frac{y_{A}+y_{B}}{y_{A}}<\frac{x_{A}+x_{B}}{x_{A}}$
$\Rightarrow \frac{y_{B}}{y_{A}}<\frac{x_{B}}{x_{A}} \Rightarrow \frac{y_{A}}{y_{B}}>\frac{x_{A}}{x_{B}}$
Q. 22 (3)
$=40+120=160$
$\mathrm{P}_{\mathrm{A}}=\mathrm{y}_{\mathrm{A}^{\circ}} \mathrm{P}=\mathrm{y}_{\mathrm{A}} \times 160$
$\Rightarrow 40=\mathrm{y}_{\mathrm{A}} \times 160$

$$
\Rightarrow y_{A}=1 / 4
$$

Q. 23 (2)
$x_{A}=\frac{1}{4}: x_{B}=\frac{3}{4}$
$P_{S}=\frac{1}{4} \times 100+\frac{3}{4} \times 80=85$
$y_{A}=\frac{P_{A}}{P_{S}}=\frac{100 \times \frac{1}{4}}{85}=\frac{25}{85}=x_{A}^{1}$
$y_{B}=\frac{60}{85}=x_{B}^{1}$
$\mathrm{P}_{\text {distilate }}=\frac{25}{85} \times 100+\frac{60}{85} \times 80$

$$
=85.88 \mathrm{mmHg}
$$

Q. 24 (C)

Pure A: $X_{B}=0$
$=\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ}=120$
Pure $\mathrm{B}: \mathrm{X}_{\mathrm{B}}=1$
$=\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{B}}{ }^{\circ}=120-75=45$
Q. 25 (C)
$\frac{1}{P}=\frac{1}{P_{B}^{0}}+y_{A}\left(\frac{1}{P_{A}^{0}}-\frac{1}{P_{B}^{0}}\right)$

Q. 26 (4)
$\mathrm{P}_{\mathrm{T}}=200 \mathrm{X}_{\mathrm{A}}+100 \mathrm{X}_{\mathrm{B}}$
$X_{A}=X_{B}=1 / 2($ given $)$
$\Rightarrow \mathrm{P}_{\mathrm{T}}=150$
If all the liquid become vapour then P_{T} can be calculated by
$\frac{1}{P_{T}}=\frac{1}{P_{B}^{0}}+y_{A}\left(\frac{1}{P_{A}^{0}}-\frac{1}{P_{B}^{0}}\right)$
$\Rightarrow P_{T}=133.3$
then pressure at which half of liquid converted into vapour must be in the range of 133.3 < $\mathrm{P}<150$
Q. 27 (3)
$\mathrm{P}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{0}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{0}=\left(\mathrm{P}_{\mathrm{A}}{ }^{0}-\mathrm{P}_{\mathrm{B}}{ }^{0}\right) \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^{0}$
So $\quad P_{B}{ }^{0}=254$

$$
\mathrm{P}_{\mathrm{A}}^{0}-\mathrm{P}_{\mathrm{B}}^{0}=-119 \mathrm{P}_{\mathrm{A}}^{0}=135
$$

Q. 28 (1)
$\mathrm{P}=\mathrm{P}_{\mathrm{B}}{ }^{\circ} \mathrm{X}_{\mathrm{B}}+\mathrm{P}_{\mathrm{T}}{ }^{\circ} \mathrm{X}_{\mathrm{T}}$
$120=150\left(X_{B}\right)+50\left(1-X_{B}\right)$
$100 \quad X_{B}=70$
$X_{B}=0.7$
$Y_{B}=\frac{X_{B} P_{B}^{0}}{P}=\frac{0.7 \times 150}{120}=0.075 \frac{Y_{B}}{Y_{T}}=\frac{7}{1} Y_{T}=1-$
$0.875=0.125$
Q. 29 (3)

As $X_{A} \longrightarrow 1$. Then we will have pure methanol so $P_{T}=120 X_{A}+140=120+140=260 \mathrm{~mm}$ of Hg.
Q. 30 (B)

$$
\mathrm{P}_{\mathrm{A}}^{\prime}=\mathrm{P}_{\mathrm{A}}{ }^{o} \mathrm{X}_{\mathrm{A}} \text { and } \mathrm{P}_{\mathrm{B}}^{\prime}=\mathrm{P}_{\mathrm{B}}^{\mathrm{o}} \mathrm{X}_{\mathrm{B}}
$$

$\mathrm{P}^{\prime}{ }_{A}=\mathrm{P}_{\mathrm{M}} \cdot \mathrm{Y}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{M}} \cdot \mathrm{Y}_{\mathrm{B}}$
$\therefore \frac{\mathrm{P}_{\mathrm{A}}^{\prime}}{\mathrm{Y}_{\mathrm{A}}}=\frac{\mathrm{P}_{\mathrm{B}}^{\prime}}{\mathrm{Y}_{\mathrm{B}}}$
or $\frac{P_{A}^{\circ} X_{A}}{Y_{A}}=\frac{P_{B}^{\circ} X_{B}}{Y_{B}}=\frac{P_{B}^{\circ}\left(1-X_{A}\right)}{\left(1-Y_{A}\right)}$
or $\frac{P_{A}^{\circ} X_{A}}{Y_{A}}\left(1-Y_{A}\right)=P_{B}^{\varrho}-P_{B}^{\varrho} X_{A}$
or $\frac{P_{B}^{\circ}}{X_{A}}=\frac{P_{A}^{\circ}}{Y_{A}}+\left(\mathrm{P}_{B}^{o}-P_{A}^{o}\right)$
or $\frac{1}{X_{A}}=\frac{1}{Y_{A}} \cdot \frac{P_{A}^{\circ}}{P_{B}^{\circ}}+\frac{\left(P_{B}^{\varrho}-P_{A}^{\circ}\right)}{P_{B}^{\circ}}$
or $y=m x+C \therefore$ Slope $=m=\frac{P_{A}^{\circ}}{P_{B}^{\circ}}$ and intercept
$\mathrm{C}=\frac{\left(\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}-\mathrm{P}_{\mathrm{A}}^{\mathrm{o}}\right)}{\mathrm{P}_{\mathrm{B}}^{\underline{o}}}$.
Q. 31 (4)
$\mathrm{P}=100 \times \frac{2}{5}+300 \times \frac{3}{5}$
$=40+180=220$
Q. $32 \quad$ (3)

Initially $A=3$ mole $; B=2$ mole
$600=\frac{3}{5} P_{A}^{0}+\frac{2}{5} P_{B}^{0} \ldots . . .1$
finally $\mathrm{A}=4.5$ mole $; \mathrm{B}=2$ mole and $\mathrm{c}=0.5$ mole
$630=\frac{4.5}{7} P_{A}^{0}+\frac{2}{7} P_{B}^{0}$
$\mathrm{P}_{\mathrm{A}}^{0}=940$
$\mathrm{P}_{\mathrm{B}}^{0}=90$
Q. 33 (1)

Entropy of solvent is less than that of solution.
Q. 34 (C)

For ideal solution
$\Delta \mathrm{H}_{\text {mix }}=0$
$\Delta G_{\text {mix }}<0$
$\Delta \mathrm{S}_{\text {mix }}>0$
Q. 35 (4)
Q. $36 \quad$ (3) for a ideal solution
$\Delta \mathrm{G}$ mix <0.

Q. 37 (2)

According to Raoult's law
$\mathrm{P}_{\mathrm{T}}=(0.08 \times 300+0.92 \times 800)$ torr $=(24+736)$ torr $=760$
torr $=1 \mathrm{~atm}$
$\mathrm{P}_{\text {exp. }}=0.95 \mathrm{~atm}<1 \mathrm{~atm}$
Hence solution shows -ve deviation
so $\Delta \mathrm{H}_{\text {mix }}<0$, and $\Delta \mathrm{V}_{\text {mix }}<0$.
Q. 38 (1)
(1) as in case of negative deviation.
(2) $\Delta G_{\text {mix }}$ is generally positive.
(3) Ideal mixture follows Raoult's law at all compositions, so can not form a constant boiling mixture.
(4) It is theoretically impossible to obtain an ideal solution.
Q. 39 (1)

It shows negative deviation from Raoult's law

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{s}}(\text { actual })=580 \text { torr } \\
& \mathrm{p}_{\mathrm{s}}(\text { Raoult })=0.4 \times 300+0.6 \times 800=600 \text { torr. }
\end{aligned}
$$

Q. 40 (1)

An azeotropic mixture boil at perticular temperture without changing its composition.
Q. 41 (B)
V.P. does not depends on surface area of liquid. (it depends on temperature).
Q. 42 (2)

> B. $\mathrm{P}_{\text {Toluluene }}>$ B. $\mathrm{P}_{\text {Benzene }}$
> V.P. Tolene $<$ V.P. . Benzene

Benzene is more volatile (By graph)
$\begin{aligned} & \mathrm{X}_{\text {Benzene }}<\mathrm{y}_{\text {Benzene }} \\ & (\mathrm{A}) \\ & \text { If } \mathrm{X}_{\mathrm{B}}=0.5\end{aligned} \Rightarrow \mathrm{y}_{\mathrm{t}}=0.2, \mathrm{y}_{\mathrm{B}}=0.8$
(B) $\mathrm{x}_{\mathrm{t}}=0.3 \Rightarrow \mathrm{x}_{\mathrm{B}}=0.7 \Rightarrow \mathrm{y}_{\mathrm{B}}=0.6$ not possible
(C) $\mathrm{x}_{\mathrm{B}}=0.3$ and $\mathrm{y}_{\mathrm{t}}=0.4$
$\Rightarrow y_{B}=0.6$ correct
(D) $\mathrm{x}_{\mathrm{B}}=0.7 . \mathrm{y}_{\mathrm{B}}>0.7$ (should be)

Given $\mathrm{y}_{\mathrm{t}}<0.3 \Rightarrow \mathrm{y}_{\mathrm{B}}>0.7$ correct
Q. 43 (2)
$\pi=$ iCRT
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=3 \mathrm{k}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(1- α) 3α
$\mathrm{i}=(1+3 \alpha)$
$3.94=(1+3 \alpha) \times \frac{1}{10} \times 0.0821 \times 300$
$\alpha=0.2$
so 20%

Q. $44 \quad$ (2)

$\pi \alpha$ No. of partial/ion.
$\mathrm{BaCl}_{2}=3, \mathrm{NaCl}=2 \quad$ glucose $=1$
So. order of $\pi=\mathrm{BaCl}_{2}>\mathrm{NaCl}>$ glucose.
Q. 45 (4)

As benzoic acid dimerises so number of moles decreases so osmotic pressure of benzoic acid is less than benzene.
so answer (4)
Q. 47 (1)

Higher the number of particles higher will be osmoatic pressure so (A) will be answer in case of (D) precipitaiton will take place so number of particles will decrease.

Q. 48 (2)

In option (2) oxidaton state of platinum is (iv)
$\mathrm{x}-6=-2$
$\mathrm{x}=+4$
Q. 49 (3)

$$
\begin{aligned}
& i=1+\alpha \\
& 10^{-4}=\mathrm{C} \alpha^{2} \\
& \alpha=\sqrt{0.01}=0.1 \\
& i=1+2=1+0.1=1.1
\end{aligned}
$$

Q. 50 (4)
$\mathrm{HA}=\mathrm{H}^{+}+\mathrm{A}^{-}$
$(1-\alpha) \alpha \quad \alpha$
$\mathrm{PH}=2=\left[\mathrm{H}^{+}\right]: 10^{-2}=\mathrm{C}^{2}$
$\alpha=0.1$
$\mathrm{i}=1+\alpha=1+0.1=1.01$
Q. 51 (3)
(1) As we know
$\mathrm{i}=1+\alpha$
$\mathrm{KCl} \rightleftharpoons \mathrm{K}^{+}+\mathrm{Cl}^{-}$
$(1-\alpha) \quad \alpha \quad \alpha$
$\mathrm{i}=1+\alpha=50 \%$ dissociation
$\mathrm{i}=1.5$
(2) $\mathrm{K}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{~K}^{+}+\mathrm{SO}_{4}^{2-}$
$(1-\alpha) \quad 2 \alpha \quad \alpha$
$1+\mathrm{Z} \alpha, \alpha=.4$
$\mathrm{i}=1.8$
(3) $\mathrm{FeCl}_{3} \rightleftharpoons \mathrm{Fe}^{+}+3 \mathrm{Cl}^{-}$
$(1-\alpha) \quad \alpha \quad 3 \alpha$
$1+3 \alpha$
$\mathrm{i}=1.9$
(4) $\mathrm{SnCl}_{4} \rightleftharpoons \mathrm{Sn}^{4+}+4 \mathrm{Cl}^{-}$
$(1-\alpha) \quad \alpha \quad 4 \alpha$
$1+4 \alpha$
$\mathrm{i}=1.8$
Q. 52 (4)
$\frac{\mathrm{P}^{\circ}-\mathrm{P}}{\mathrm{P}^{\circ}}=0.05=\mathrm{X}_{\mathrm{B}}$
Where $X_{B}=$ mole fraction of solute.
Molality $=\frac{1000 \times X_{B}}{\left(X_{A} \times M_{A}\right)}=1000 \times 0.05 / 0.95 \times 18=$ $2.92 \approx 3.0$
Q. 53 (1)
$\frac{\Delta P}{P}=\frac{n i}{n i+N}$
$0.5=\frac{2 i}{2 i+3}$
$\mathrm{i}+1.5=2 \mathrm{i}$
$\mathrm{i}=1.5$
$\mathrm{i}=1+(\mathrm{y}-1) \alpha$
$1.5=1+(2-1) \alpha$
$\alpha=0.5$
mole of $\mathrm{Cl}^{-}=1.0$
mole of AgCl ppt. $=1.0$
Q. 54 (2)

Glucose does not dissociate $\Rightarrow \mathrm{i}=1$
Q. 55 (2)
$\mathrm{i}=\frac{\text { actual mole of solute }(\text { Experiment })}{\text { theoritical mole of solute }}$
$\mathrm{i}=\frac{\mathrm{M}_{\mathrm{T}}}{\mathrm{M}_{\text {exp. }}}$
$\mathrm{i}=1+\alpha(\mathrm{n}-1)=1+\alpha(3-1)$
$\Rightarrow \mathrm{i}=1+2 \alpha \Rightarrow \mathrm{i}>1$
$\Rightarrow \frac{\mathrm{M}_{\mathrm{T}}}{\mathrm{M}_{\text {exp }}}>1$
$\Rightarrow M_{T}>M_{\text {exp }}$
$\Rightarrow \mathrm{M}_{\text {exp }}<111$
Q. 56 (2)
(a) Acc. to R.L. V.P. $\Rightarrow \frac{\Delta P}{P_{0}}=X_{B}$
$X_{B}=\frac{0.80-0.60}{0.80}=\frac{0.20}{0.80}=0.25$.
Q. 57 (2)
R.L.V.P. : $\frac{P_{A}^{0}-P_{S}}{P_{A}^{0}}=X_{B}$
$X_{B}=\frac{10-9}{10}=\frac{1}{10}$
$X_{B}=\frac{n_{B}}{n_{A}+n_{B}}=\frac{n_{B}}{n_{A}+n_{B}}=\frac{\frac{W_{B}}{M_{B}}}{\frac{W_{A}}{M_{A}}+\frac{W_{B}}{M_{B}}}$
$M_{B}=\frac{900}{10}=90$.
Q. 58 (2)

According to question $\quad \mathrm{P}_{\mathrm{s}}=0.95 \mathrm{P}_{0}$ according raoult's law $\quad \mathrm{P}_{\mathrm{s}}=\mathrm{P}_{0} \mathrm{X}_{\mathrm{A}}$ given $\mathrm{M}_{\mathrm{A}}=0.3$ M_{B}
$0.95 \mathrm{P}_{0}=\mathrm{P}_{0}\left(\frac{\frac{W_{A}}{M_{A}}}{\frac{W_{A}}{M_{A}}+\frac{W_{B}}{M_{B}}}\right) M_{A}=$ molecular wt. of
solvent
$M_{B}=$ molecular wt. of solute
$0.95=\frac{\frac{W_{A}}{0.3 M_{B}}}{\frac{W_{A}}{0.3 M_{B}}+\frac{W_{B}}{M_{B}}} W_{A}=$ gram wt. of solvent
$\mathrm{W}_{\mathrm{B}}=$ gram wt. of solute
on solving $\frac{W_{A}}{W_{B}}=5.7$.
Q. 59 (3)

Lowering of V.P. is colligative property
thus, $\mathrm{i}_{\mathrm{K}_{2} \mathrm{SO}_{4}}=1+(\mathrm{y}-1) \mathrm{x}=1+2 \mathrm{x}=3$

$$
\begin{aligned}
\therefore \quad & \text { If } \frac{\Delta p}{p^{\circ}}=\frac{n_{1} i}{n_{1} i+n_{2}} \\
& \frac{10}{50}=\frac{3 n_{1}}{3 n_{1}+12}=\frac{n_{1}}{n_{1}+4} \\
& n_{1}=1
\end{aligned}
$$

Q. 60 (4)
$\frac{\Delta P}{P_{0}}=X_{B}$ So $X_{B}=\frac{760-750}{760}=\frac{1}{76}$ Ans.

Q. 61 (3)

More is the value of Vant Hoff factor, more will be RLVP.
Q. 62 (3)

$$
\begin{aligned}
& \frac{P^{0}-P}{P}=\frac{n_{\text {solute }}}{n_{\text {solvent }}}=\frac{n}{N} \\
& \frac{P^{0}-P}{P^{0}}=\frac{n_{\text {solute }}}{n_{\text {solute }}+n_{\text {solvent }}}
\end{aligned}
$$

Q. 63 (1)
less no of particle of solute means maximum vapour pressure.
Q. 64 (2)
$\mathrm{P}=0.95 \mathrm{P}^{0}$
$X_{\text {solvent }}=0.95, X_{\text {solute }}=0.005$
$\frac{P^{0}-P}{P^{0}}=\frac{n}{N+n}=\frac{\left(W_{\text {solute }} / M_{\text {solute }}\right)}{\frac{W_{\text {solute }}}{M_{\text {solute }}}+\frac{W_{\text {solvent }}}{M_{\text {solvent }}}}$
$M_{\text {solute }}=M \Rightarrow M_{\text {solvent }}=0.3 M$
$\Rightarrow 0.05=\frac{\left(W_{\text {solute }} / M\right)}{\left(\frac{W_{\text {solute }}}{M}\right)+\left(\frac{W_{\text {solvent }}}{0.3 M}\right)}$
$\Rightarrow \frac{W_{\text {solvent }}}{W_{\text {solute }}}=5.7$
Q. 65 (3)
$\frac{P^{0}-P}{P^{0}}=X_{\text {solute }}$
$P^{0}-P \propto X_{\text {solute }}$
$\frac{10}{20}=\frac{0.2}{X_{\text {solute }}}$
$\Rightarrow X_{\text {solute }}=0.4 \Rightarrow X_{\text {solvent }}=0.6$
Q. 66 (1)
$\frac{P^{0}-P}{P}=\frac{1000}{M_{\text {solvent }}}=m$
$m=\frac{17.25-17.20}{17.20} \times \frac{1000}{18}=0.1615$
If $\mathrm{m}=\mathrm{M}=0.1615$
$\mathrm{XCl}_{3} \longrightarrow \mathrm{X}+3 \mathrm{Cl}$
$\mathrm{M}_{\text {total }}=\mathrm{S}+3 \mathrm{~S}=4 \mathrm{~S}=0.1615$
$\mathrm{S}=0.040375=4.037 \times 10^{-2}$
Q. 67 (2)
(1) $\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{ms}$
$\Delta \mathrm{T}_{\mathrm{b}}=2 \mathrm{~K}_{\mathrm{b}} \times \mathrm{m}$
elavation of b.p. will be double in case of NaCl not b.p.
(2) Will be correct because b.p. elavation will be double here in comprasion to glucose.
(3) Elavation of b.p. is colligative property not b.p. so answer (2).
Q. 68 (D)
$\Delta \mathrm{T}_{\mathrm{f}}=2 \mathrm{~K}_{\mathrm{f}} \times \frac{\mathrm{W}}{\mathrm{W} \times \mathrm{M}} \times 1000$
$0.01=0.1 \times \frac{2.56}{100 \times M} \times 1000$
$\mathrm{M}=256$
$\mathrm{M}=8 \times 32$
Thus atomicity $=8$
Answer (D)

Q. 69 (3)

B.P. of water is elevated.
Q. 70 (B)

Atmospheric pressure is low.
Q. 71 (2)
$\Delta T=\frac{1000 \times K_{b} \times Y}{250 \times M}=\frac{4 K_{b} Y}{M}$
Q. 72 (2)

As $m \rightarrow 0$ (infinite dilution) both electrolytes will be completely dissociated so
$\mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
$\mathrm{NaHSO}_{4} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$.

$$
\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\Delta \mathrm{~T}_{\mathrm{b}}}=\frac{\mathrm{mK}_{\mathrm{b}} \mathrm{i}_{\mathrm{NaHSO}}^{4}}{} \mathrm{mK}_{\mathrm{b}} \mathrm{i}_{\mathrm{NaCl}}=\frac{3}{2}=1.5
$$

Q. 73 (4)

$$
\begin{gathered}
\mathrm{AIPO}_{4} \underset{\mathrm{i}=1+\mathrm{x}=2}{\rightleftharpoons \mathrm{Al}^{3+}+\mathrm{PO}_{4}^{3-}} \\
\Delta \mathrm{T}_{\mathrm{b}}=\text { molality } \mathrm{K}_{\mathrm{b}} \mathrm{i}
\end{gathered}
$$

$$
\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{~K}_{\mathrm{b}}}=0.02
$$

Q. 74 (2)

$\mathrm{x}_{3} \mathrm{y}_{2} \rightleftharpoons 3 \mathrm{x}^{2+}+2 \mathrm{y}^{3-}$ for complete ionization.
$1-\alpha \quad n \alpha m \alpha$
$\mathrm{i}=1+(\mathrm{m}+\mathrm{n}-1) \alpha$
$\mathrm{i}=1+(2+3-1) \times 0.25=1+1=2$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{k}_{\mathrm{b}} \times \mathrm{m}=2 \times 0.52 \times 1=1.04$
B.P. of solution $\left(\mathrm{T}_{\mathrm{b}}\right)=\Delta \mathrm{T}_{\mathrm{b}}+\mathrm{T}_{\mathrm{b}}{ }^{\circ}=1.04+373=374.04 \mathrm{~K}$

Ans.
Q. 75 (B).
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{m} \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{w}}{\mathrm{M}} \times \frac{1000}{\mathrm{~W}} \times \mathrm{K}_{\mathrm{b}}$
$\Delta \mathrm{T}_{\mathrm{b}}=47.98-46.3=1.68$
$1.68=\frac{28}{M} \times \frac{1000}{315} \times 2.38$
$M=\frac{28 \times 1000 \times 2.38}{315 \times 1.68}=125.92$
Atomicity $=\frac{\text { Mol. wt. }}{\text { At. wt. }}=\frac{125.92}{31}=4.02$
So. Molecule is $=P_{4}$.
Q. 76 (B)
$\mathrm{AlCl}_{3}=$ no. of particle $=4$
$\mathrm{CaCl}_{2}=$ no. of particle $=3$
(vapour pressure of AlCl_{3}) < (vapour pressure of CaCl_{2} solution)
$\mathrm{T}_{\text {B.P. }}\left(\mathrm{AlCl}_{3}\right)>\mathrm{T}_{\text {B.P. }}\left(\mathrm{CaCl}_{2}\right)$
$\mathrm{T}_{1}>\mathrm{T}_{2}$
Q. 77 (3)

100\% dissociation
$\Delta \mathrm{T}_{\mathrm{f}}=(0.0054)=\mathrm{i} \mathrm{K} \mathrm{K}_{\mathrm{f}} \mathrm{m}$
$=\mathrm{i} \times 1.86 \times 0.001$
= $\mathrm{i}=3$
$=3$ particles $\left[\mathrm{MA}_{6}\right] \mathrm{A}_{2}$

Q. 78 (1)

Higher freezing point \Rightarrow lesser $\Delta \mathrm{T}_{\mathrm{f}} \Rightarrow$ lesser molality \Rightarrow lesser number of particles
Q. 79 (1)
$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2} \rightleftharpoons 3 \mathrm{Ba}^{2+}+2 \mathrm{PO}_{4}{ }^{3-}$
value of $\mathrm{i}=5$ (100% ionised)
so $\quad \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{ik} \mathrm{k}_{\mathrm{f}} \mathrm{m}$
so $\quad m=\frac{\Delta T_{f}}{i k_{f}}=\frac{0.05}{5}=0.01$
Q. 80 (1)
$\Delta \mathrm{T}_{\mathrm{f}}=0.2 \times 1.2 \times 1.86=0.45$
therefore freezing point $=-0.45^{\circ} \mathrm{C}$.
Q. 81 (1)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{ik}_{\mathrm{b}} \mathrm{m}$
so $\quad i=\frac{2.08}{0.52 \times 1}=4$
so the compex is $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)\right]$
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightleftharpoons 3 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
Q. 82 (1)
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} . \mathrm{kb} . \mathrm{m}$
$0.69=i \times \frac{5.12 \times 20 \times 1000}{94 \times 1000}$
$\mathrm{i}=0.63$
for dimerization $\mathrm{i}=1-\alpha / 2$

$$
\begin{aligned}
& 0.63=1-\alpha / 2 \\
& \alpha=0.74 .
\end{aligned}
$$

Q. 83 (A)
$1.24=34.3\left[\frac{0.849 / \mathrm{M}}{0.05}\right] \Rightarrow \mathrm{M}=469.68$
\therefore as $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ molecules.
Q. 84 (2)
(i) $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{m} \times \mathrm{K}_{\mathrm{f}}$
$0.2=\frac{X \times 1000}{100} \times 1.86 \quad X=\frac{0.2}{10 \times 1.86}$
after freezing
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{m} \times \mathrm{K}_{\mathrm{f}}$
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{X} \times 1000}{(100-\mathrm{y})} \times 1.86 \quad \Delta \mathrm{~T}_{\mathrm{f}}=0.25$
On solving, Amount of ice $y=20 \mathrm{~g}$ ice
Q. 85 (C)
$\mathrm{T}_{1}=$ Tripal point temp,$\quad \mathrm{T}_{2}=$ Critical point temp., $\mathrm{T}_{3}=$ M.P.
$\mathrm{T}_{4}=\mathrm{B} . \mathrm{P}$.
Q. 86 (1)
(1) $\mathrm{i}=1+0.90(5-1)=1+3.6=4.6$
(2) $\mathrm{i}=1+0.90(3-1)=2.8$
(3) $\mathrm{i}=1+0.9(3-1)=2.8$
(4) $i=2.8$

Ans is (A) Higher the value of i means Boiling point will be higher.
Q. 87 (4)
$\mathrm{M}=1 \mathrm{~d}=1.2 \mathrm{Mol}$ mass $=180$
$\mathrm{m}=\frac{1000 \times M}{1000 d-M \times 180}$
$=\frac{1000}{1200-180}=\frac{1000}{1020}$
$\Delta T_{b}=\frac{1000}{1020} K_{b}=0.98 K_{b}$
Q. 88 (B)

20 mole $\mathrm{C}_{6} \mathrm{H}_{6}, 10$ mole $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \Rightarrow \mathrm{X}_{\mathrm{B}}=\frac{2}{3}, \mathrm{X}_{\mathrm{C}}=\frac{1}{3}$
at $\mathrm{t}=100^{\circ} \mathrm{C} \Rightarrow \mathrm{p}_{\mathrm{s}}=300 \times \frac{1}{3}+1350 \times \frac{2}{3}=100+900$ ($=1000$).
Q. 89 (2)

$$
0.20=1.8 \times \mathrm{M} \times \mathrm{i}
$$

$\mathrm{i}=\frac{0.20}{0.1 \times 1.8}=\frac{20}{18}=\frac{10}{9}$

$$
\underset{0.1-0.1 \alpha}{\mathrm{HX}} \rightleftharpoons \underset{0.1 \alpha}{\mathrm{H}^{+}}+\underset{0.1 \alpha}{\mathrm{X}^{-}}
$$

$\mathrm{i}=\frac{10}{9}$ and $\mathrm{i}=1+\alpha(2-1)=1+\alpha$
$\Rightarrow \alpha=\frac{1}{9}$

$$
K=\frac{0.1 \alpha^{2}}{1-\alpha}=\frac{\left(0.1 \times \frac{1}{81}\right)}{1-\frac{1}{9}}=1.38 \times 10^{-3}
$$

Q. 90 (1)

$$
1.04=0.52 \times \mathrm{m}
$$

$$
\Rightarrow \mathrm{m}=2
$$

$$
2=\frac{\mathrm{P}^{0}-750}{750} \times \frac{1000}{18}
$$

$\Rightarrow \quad \mathrm{P}^{0}=777=\mathrm{P}_{\mathrm{atm}}$
$\mathrm{P}^{0}=\mathrm{P}_{\text {atm }}$ (because at T water boils)
So at T: $\mathrm{P}^{0}=\mathrm{P}_{\mathrm{atm}}$
because when water boils V.P. become equals to atmospheric pressure
Q. 91 (1)
$\pi=$ CRT $7.40=\mathrm{n} \times 0.0821 \times 300$
$\pi=\frac{\mathrm{n}}{\mathrm{V}} \mathrm{RT} \mathrm{n}=\frac{7.4}{0.0821 \times 300}=0.3$.
Q. 92 (3)

Isotonic solution has same conc.
$\pi_{1}=\pi_{2} C_{1}=C_{2} n_{1}=n_{2} \frac{W_{1}}{M_{1}}=\frac{W_{2}}{M_{2}}$
So, $\quad \frac{x}{180}=\frac{4}{60} \Rightarrow x=12 \mathrm{~g}$ Ans.
Q. 93 (4)

For isotonic solution $\pi_{1}=\pi_{2} ; \mathrm{C}_{1}=\mathrm{C}_{2} ; \mathrm{n}_{1}=\mathrm{n}_{2}$

$$
\frac{W_{1}}{M_{1}}=\frac{W_{2}}{M_{2}} \Rightarrow \frac{10.5}{M}=\frac{180}{30} \Rightarrow M=\frac{10.5 \times 180}{30}=63
$$

Ans.
Q. 94 (3)

$$
\pi_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}=\pi_{1} \mathrm{~V}_{1}+\pi_{2} \mathrm{~V}_{2}
$$

$$
\pi_{\mathrm{f}}=\frac{1.2 \mathrm{~V}+2.5 \mathrm{~V}}{2 \mathrm{~V}}=\frac{3.7 \mathrm{~V}}{2 \mathrm{~V}}
$$

$$
\pi_{\mathrm{f}}=1.85 \mathrm{~atm}
$$

Q. 95 (1)

(1) All solutions are not isotonic because all solution are not at equal concentration so (A) is incorrect
(2) As benzoic acid dimerises so III is hypotonic of I, II, IV
(3) Is also correct as I, II \& IV are hypertonic of III
(4) As ammoniun sulphate has maximum number of particale so it will be hypertonic of I, II, III so answer (1)

Q. 96 (3)

As number of moles is maximum in case
urea > glucose > sucrose
$\pi=$ CRT
It depends on number of moles
so osmotic pressure
$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}$
i.e.,

Q. 97 (4)

All solution have same No. of particle and also have same value of $\pi . n_{1}=n_{2} ; \pi_{1}=\pi_{2}$ (Isotonic).

Q. 98 (4)

Isotonic means equal osmotic pressure so,
$\pi_{1}=\pi_{2}$
$\mathrm{i}_{1} \mathrm{C}_{1} \mathrm{RT}=\mathrm{i}_{2} \mathrm{C}_{2} \mathrm{RT}$
so $i_{1} \mathrm{C}_{1}=\mathrm{i}_{2} \mathrm{C}_{2}$
In case of (4) both the volume of (i) \& (3) are equal. so Answer (D)
Q. 99 (4)

Only solvent molecules can go through SPM, not the solute particles hence no blue colour formation
Q. 100 (4)

As, we know that
Ps $=\frac{1}{4} \times 100+\frac{3}{4} \times 60$
$=25+45 \mathrm{mmHg}$
$=70 \mathrm{~mm} \mathrm{Hg}$
To $\mathrm{mm} \mathrm{Hg}<75 \mathrm{~mm} \mathrm{Hg}$ thus there is positive deviation from Raoults law,
so
(A) is correct
(B) If v.p. is increasing boiling point will be lowered in that case
(C) is correct that force of attraction between $\mathrm{A} \& \mathrm{~B}$ is smaller than that between A and A or between B and B.

So All statement are corrrect
Q. 101 (1)

Higher the Van't hoff factor higher will be the elavation in b. p. so
$\mathrm{y}<\mathrm{x}<\mathrm{z}$
$0.8<1.8<2.5$
Q. 102 (4)
$\mathrm{i}=1+\alpha(5-1)$
$=1+0.6(D)=3.4$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =3.4 \times 0.52 \times 1 \\
& =1.768 \\
\mathrm{~T}_{\mathrm{b}}^{1} & =373+1.768 \\
& =374.76
\end{aligned}
$$

JEE-ADVANCED

 OBJECTIVE QUESTIONS
Q. 1 (A)

Let volumes takne by ' x ' \& ' y ' litres, so $\frac{0.1 x+0.4 y}{x+y}$
$=0.34 \& \mathrm{~V}_{\mathrm{g}}=(\mathrm{x}+\mathrm{y})$ (to be maximised)
so $\mathrm{y}=4 \mathrm{x}$ so for maximum volume

$$
y=2 L \& x=\frac{1}{2} L
$$

Q. 2 (B)
$\pi=$ CRT
$\mathrm{C}=\left(0.34+\frac{0.1 \times 0.5}{2.5}+\frac{0.2 \times 2}{2.5}\right)=0.34+0.02+0.16=$ 0.52
so $\pi=0.52 \times 0.082 \times 300 \mathrm{~atm}=12.792 \mathrm{~atm}$
Q. 3 (A)
Q. 4 (B)
Q. 5 (D)

Possible vapor pressures are

$$
\begin{aligned}
& \frac{75+22}{2}, \frac{75+10}{2}, \frac{22+10}{2} \text { and } \frac{75+22+10}{3} \\
& =48 \frac{1}{2}, 42 \frac{1}{2}, 16,35 \frac{2}{3} .
\end{aligned}
$$

(A)
$760=300 \mathrm{X}_{\mathrm{A}}+800\left(1-\mathrm{X}_{\mathrm{A}}\right)$
$\Rightarrow 760=800-500 X_{\mathrm{A}}$
$\Rightarrow 500 \mathrm{X}_{\mathrm{A}}=40$
$\therefore \quad \mathrm{X}_{\mathrm{A}}=\frac{40}{500}=0.08$.
Q. 7 (D)
$\frac{\mathrm{P}_{\mathrm{A}}^{0}}{4}+\frac{3 \mathrm{P}_{\mathrm{B}}^{0}}{4}=1 \mathrm{~atm}$
$\Rightarrow \mathrm{P}_{\mathrm{A}}{ }^{\circ}+\mathrm{P}_{\mathrm{B}}{ }^{\circ}=2 \mathrm{~atm}$

$$
\begin{aligned}
& \frac{\mathrm{P}_{\mathrm{A}}^{0}}{4}+\frac{3 \mathrm{P}_{\mathrm{B}}^{0}}{4}>1 \mathrm{~atm} \\
& \Rightarrow \mathrm{P}_{\mathrm{A}}^{\circ}+3 \mathrm{P}_{\mathrm{B}}^{\circ}>4 \mathrm{~atm} \\
& \& \frac{\mathrm{P}_{\mathrm{A}}^{0}}{8}+\frac{3 \mathrm{P}_{\mathrm{B}}^{0}}{8}+\frac{4 \mathrm{P}_{\mathrm{C}}^{0}}{8}=1 \mathrm{~atm} \\
& \Rightarrow \mathrm{P}_{\mathrm{A}}{ }^{\circ}+3 \mathrm{P}_{\mathrm{B}}{ }^{\circ}+4 \mathrm{P}_{\mathrm{C}}^{\circ}=8 \mathrm{~atm} \\
& \text { so } \mathrm{P}_{\mathrm{A}}^{\circ}{ }^{\circ}+3 \mathrm{P}_{\mathrm{B}}^{\circ}=(8-4 \times 0.8) \mathrm{atm}=4.8 \mathrm{~atm} \\
& \text { Hence } \\
& \mathrm{P}_{\mathrm{A}}^{\circ}=0.6 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{B}}^{\circ}=1.4 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Q. } 8 & \text { (C) } \\
\mathrm{P}_{\text {Total }}=0.4 \times 80+0.6 \times 120=104>100 \mathrm{~mm} \text { of } \mathrm{Hg} \text {. }
\end{array}
$$

$$
\text { Q. } 9 \quad(\mathrm{~A})
$$

Q. 10 (A) $3 \mathrm{~S} \rightleftharpoons \mathrm{~S}_{3}$
10
$1-\alpha$

Now

$$
\frac{\alpha}{3} \Rightarrow i=1-\frac{2 \alpha}{3}
$$

$$
0.1\left(1-\frac{2 \alpha}{3}\right)=0.08
$$

$\Rightarrow \alpha=0.3$. Hence 30% trimerization.
Q. 11 (B)
$\mathrm{i}=1+\alpha(\mathrm{n}-1)$ or $4=1+0.75(\mathrm{n}-1)$
$\therefore \mathrm{n}=5$, so complex will be $\mathrm{Ba}_{3}\left[\mathrm{Co}(\mathrm{CN})_{5}\right]_{2}$.

Q. 12 (B)

Mole of solute in first beaker $=\frac{0.05 \times 20}{1000}=0.001$
mole of solute $\left(\mathrm{Na}^{+} \& \mathrm{Cl}^{-}\right)$in other beaker $=$

$$
\frac{2 \times 0.03 \times 20}{1000}=0.0012
$$

conc. of IInd beaker is higher then Ist beaker so water flowes from Ist beaker to IInd beaker till both beaker achieved equal conc. let v volume of water flows from Ist to IInd beaker
so $\frac{0.001}{20-v}=\frac{0.0012}{20+v}$
$\mathrm{v}=1.8 \mathrm{ml}$
volume of Ist beaker $=20-1.8=18.2 \mathrm{ml}$
volume of IInd beaker $=20+1.8=21.8 \mathrm{ml}$.

Q. 13 (B)

Q. 14 (D)
Q. 15 (B)

Wt gain means
weight loss means
V. $P_{\text {incoming }}>$ V. $P_{\text {outgoing }}$
V. $P_{\text {incoming }}<$ V. $P_{\text {outgoing }}$

So $p_{1}>\mathrm{p}_{2}<\mathrm{p}_{3} \quad$ and
$c_{1}<c_{2}>c_{3}$
Q. 16 (A)
Q. 17 (D)
$\Delta T_{f}=\frac{1000 k_{f} \times w}{m \cdot w .}$
for $\mathrm{AB}_{2}=3.2=\frac{1000 \times \mathrm{k}_{\mathrm{f}} \times 1}{\mathrm{M}_{1} \times 20}$
for $\mathrm{AB}_{4}=1.3=\frac{1000 \mathrm{k}_{\mathrm{f}} \times 1}{\mathrm{M}_{2} \times 20}$
$M_{1}=110.67, M_{2}=196.15$
for $\mathrm{AB}_{2}=\mathrm{a}+2 \mathrm{~b}=110.87$
for $\mathrm{AB}_{4}=a+4 b=196.15$
By solving eq (i) and (ii)
$a=25.59 \quad b=42.64$
Q. 18 (C)
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{m} \times \mathrm{k}_{\mathrm{f}}$
$i=\frac{3.72}{1.86 \times 1}=2$
So salt is $\left(\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right) \mathrm{Cl} .3 \mathrm{H}_{2} \mathrm{O}$.
Q. 19 (B)

Due to this addition a complex $\left[\mathrm{HgI}_{4}\right]^{2-}$ will get formed as follows

$$
\mathrm{Hg}^{2+}+4 \mathrm{I}^{-} \rightleftharpoons\left[\mathrm{HgI}_{4}\right]^{2-}
$$

or $\mathrm{Hg}^{2+}+2 \mathrm{Cl}^{-}+4 \mathrm{I}^{-} \rightleftharpoons\left[\mathrm{HgI}_{4}\right]^{2-}+2 \mathrm{Cl}^{-}$
on adding we can see that $4 \mathrm{I}^{-}$ions are consumed but resultant number of particles are three.
Hence boiling point gets decreased.
freezing point gets increased.
Q. 20 (B)
$0.0558=\mathrm{i} \times 1.86 \times \frac{0.01}{1}$
$\Rightarrow \mathrm{i}=3$
\Rightarrow fully ionized
$0.0744=\mathrm{i} \times 1.86 \times \frac{\frac{21.68}{271}}{2}$
$\Rightarrow \mathrm{i}=1$
\Rightarrow fully unionized

$$
\text { Q. } 21 \begin{aligned}
&(\mathrm{C}) \\
& \Delta \mathrm{T}_{\mathrm{f}}=\text { i.m. } \mathrm{K}_{\mathrm{f}} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{i}_{1} \mathrm{~m}_{1} \mathrm{~K}_{\mathrm{f}}+\mathrm{i}_{2} \mathrm{~m}_{2} \mathrm{~K}_{\mathrm{f}}+\mathrm{i}_{3} \mathrm{~m}_{3} \mathrm{~K}_{\mathrm{f}}=\left(\mathrm{m}_{1}+2 \mathrm{~m}_{2}+\mathrm{m}_{3}\right) \mathrm{K}_{\mathrm{f}} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=\frac{\frac{3}{60}+\frac{7.45 \times 2}{74.5}+\frac{9}{180}}{100} \times 1000 \times 1.86 \\
& \Delta \mathrm{~T}_{\mathrm{f}}=3 \times 1.86 \\
&=5.58 \\
& \mathrm{~T}_{\mathrm{f}} \text { of solution }=273-5.58=267.42 \text { K Ans. }
\end{aligned}
$$

Q. 22 (B)
$\mathrm{KCl}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgCl}+\mathrm{KNO}_{3}$
$\begin{array}{lc}0.8 \times 25 \quad 1 \times 20 & 0 \quad 0 \\ \text { (mili mole) } \text { (mili mole) } & 002020\end{array}$

Mole of KNO_{3} in solutions $=\frac{20}{45}$.
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{m} \times \mathrm{K}_{\mathrm{f}}$
$\Delta \mathrm{T}_{\mathrm{f}}=2 \times \frac{20}{45} \times 2=\frac{80}{45}$
Q. 23 (D)

Boiling point of solution $=$ boiling point $+\Delta \mathrm{T}_{\mathrm{b}}=100+$ $\Delta \mathrm{T}_{\mathrm{b}}$
Freezing point of solution $=$ freezing point $-\Delta T_{f}=0-$ $\Delta \mathrm{T}_{\mathrm{f}}$
Difference in temperature (given) $=100+\Delta \mathrm{T}_{\mathrm{b}}-\left(-\Delta \mathrm{T}_{\mathrm{f}}\right)$
$104=100+\Delta \mathrm{T}_{\mathrm{b}}+\Delta \mathrm{T}_{\mathrm{f}}=100+$ molality $\times \mathrm{K}_{\mathrm{b}}+$ molality
$\times \mathrm{K}_{\mathrm{f}}$
$=100+$ molality $(0.52+1.86)$
\therefore Molality $=\frac{104-100}{2.38}=\frac{4}{2.38}=1.68 \mathrm{~m}$
and molality =
$\frac{\text { moles } \times 1000}{\mathrm{~W}_{\text {gm (solvent) }}}$
$1.68=\frac{\text { moles } \times 1000}{500}$
\therefore Moles of solute $=\frac{1.68 \times 500}{1000}=0.84$ moles.
Q. 24 (A)
$x+y=0.1$
$x / y=0.37$
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{x}+\mathrm{x}+\mathrm{y}+2 \mathrm{y}}{1000} \times 1000 \times 1.85$
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{0.2+\mathrm{y}}{1000} \times 1000 \times 1.85$
$\Delta \mathrm{T}_{\mathrm{f}}=(0.2+0.0729927) \times 1.85=0.505$
Q. 25 (A)
Q. 26 (B)
Q. 27 (D)

Semipermeable membrane allows the solvent particles only to pass through it.
Q. 28 (A)
$\pi_{\mathrm{I}}=2 \mathrm{R} \times 300 \times\left(1+\left(\frac{1}{2}-1\right) 1\right)=300 \mathrm{R}$
$\pi_{\text {II }}=0.5 \mathrm{R} \times 300 \times 2=300 \mathrm{R}$
Q. 29 (B)

JEE-ADVANCED
 MCQ/COMPREHENSION/MATCHING
 Q. 1 (AB)

$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}} \neq \mathrm{P}_{\mathrm{A}}{ }^{0}+\mathrm{P}_{\mathrm{B}}{ }^{0}$
boiling point of the solution will be in between the boiling point of two liquids.
Q. 2 (ACD)
Q. 3 (A, B, C)

For - ve deviation

$$
\begin{aligned}
& A--B>A--A \\
& A--B>B--B
\end{aligned}
$$

- ve diviation solution are non ideal solution.
Q. 4 (A, B,C,D)
$\mathrm{CHCl}_{3}+$ Acetone : Negative deviation from Raoult's law.
So, $\mathrm{p}_{\text {actual }}<\mathrm{p}_{\text {Raoult }}$.
Q. 5 (A,C)
polar-polar \rightarrow-ve deviation
Q. 6 (ACD)
Q. 7 (A, B, C)

For ideal solution $\Delta \mathrm{H}=0, \Delta \mathrm{~V}=0, \Delta \mathrm{~S}_{\text {mix }} \neq 0$.
Obey Raoult's law.
Q. 8 (A,B,C)
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{3}$: ideal solution,
Non-ideal solution : A, B, C.
Q. 9 (B,D)

Number of particles from $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=5$
number of particles from $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $=5$
number of particles from $\mathrm{KCl} . \mathrm{MgCl}_{2} .8 \mathrm{H}_{2} \mathrm{O}=5$
Q. 10 (D)
$\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \longrightarrow \mathrm{BaSO}_{4}+2 \mathrm{KCl}$
0.02
0.02

0 0
0
0.02

0
0.04

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{m} \mathrm{~K}_{\mathrm{b}} \mathrm{i}
$$

$\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{\mathrm{i}}=(0.02 \times 2+0.02) \times \mathrm{K}_{\mathrm{b}}=0.06 \mathrm{~K}_{\mathrm{b}}$
$\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{\text {final }}=0.04 \times 2 \times \mathrm{K}_{\mathrm{b}}=0.08 \mathrm{~K}_{\mathrm{b}}$
$\Delta \mathrm{T}_{\mathrm{b}} \uparrow$ So B.P. \uparrow
$\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\mathrm{i}}=-0.06 \mathrm{~K}_{\mathrm{f}} ;\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\mathrm{f}}=0.08 \mathrm{~K}_{\mathrm{f}}$
$\Delta T_{f} \uparrow$ So F.P. \downarrow
$\frac{\mathrm{dP}}{\mathrm{P}}=\mathrm{X}_{\text {solute }} \quad ; \mathrm{X}_{\text {solute }} \uparrow$ So dP \downarrow
VP \downarrow

$$
\pi_{\text {initial }}=\mathrm{MRTi}=0.06 \mathrm{RT}
$$

$\pi_{\text {final }}=0.08 \mathrm{RT}$
So, $\pi \uparrow$
Q. 11 (B, D)

Solute
$x \quad i=[1+(y-1) x]$
(A) KCl

2
0.51 .5
(B) $\mathrm{K}_{2} \mathrm{SO}_{4}$

3
0.41 .8
(C) FeCl_{3}

4
0.31 .9
(D) SnCl_{4}
0.21 .8
Q. 12 (A, B, C)
$\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}} \rightleftharpoons \mathrm{xA}^{\mathrm{m}+}+\mathrm{yB}^{\mathrm{n}+}$
Initial molesnoo

At eq b.n(1- α) nx α nya
$\mathrm{i}=\frac{\text { Totalmol at equilirium }}{\text { Initialmol }}=\frac{\mathrm{n}[(1-\alpha)+\mathrm{x} \alpha+\mathrm{y} \alpha]}{\mathrm{n}}$
$i=(1-\alpha)+x \alpha+y \alpha$
It can also seen that all other expressions imply the same thing.
$\begin{array}{ll}\text { (A) } \alpha=\frac{i-1}{x+y-1} & \text { (B) } i=(1-\alpha)+x \alpha+y \alpha\end{array}$
(C) $\frac{1-i}{1-x-y}$
Q. 13 (AB)
Q. 14 (A, C)
$\mathrm{i}=1+(\mathrm{y}-1) \alpha$
$\mathrm{i}=1+\mathrm{y}-1=\mathrm{y}$.
y i
$\mathrm{Na}_{2} \mathrm{SO}_{4} \quad 33$
$\mathrm{MgCl}_{2} \quad 33$
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \quad 44$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad-1$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{mK}_{\mathrm{b}} \mathrm{i}$
$\mathrm{i}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\mathrm{i}_{\mathrm{MgCl}_{2}}$
$\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{\mathrm{MgCl}_{2}}$
(B.P.) $\mathrm{Na}_{2} \mathrm{SO}_{4}=($ B.P. $){ }_{\mathrm{MgCl}_{2}}$
Q. 15 (BCD)

A There will be movement of solvent
$\mathrm{Bi}_{\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}}>\mathrm{iMgSO}_{4} \pi_{\mathrm{Ba}_{3}\left(\mathrm{PP}_{4} / 2\right.}>\pi_{\mathrm{MgSO}_{4}}$
CSolvent flow from right $\left(\mathrm{MgSO}_{4}\right)$ to left $\left(\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$
D No flow of solute
\Rightarrow no ppt formation

Comprehenson \# 1 (Q. No. 16 to 18)

Q. 16 (C)
Q. 17 (C)
Q. 18 (A)
$16 \pi=$ iCRT
$0.369=\mathrm{i} \times \frac{1.8}{180} \times 0.0821 \times 300$
$\mathrm{i}=1.5$
$17 i=\frac{M_{\text {theoritical }}}{M_{\text {obsereved }}}=\frac{180}{1.5}=\mathbf{1 2 0} \mathbf{~ g m}$
$18 \mathrm{HA}+\mathrm{NaOH} \rightarrow \mathrm{NaA}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{V} \times 0.01 \quad 0.01 \times \mathrm{V}$
$00 \frac{0.01 \mathrm{~V}}{2 \mathrm{~V}}=0.005$
$\pi=2 \times 0.005 \times 0.082 \times 300=\mathbf{0 . 2 4 6} \mathbf{~ a t m}$
Comprehension \# 2 (Q. No. 19 to 21)
Q. 19 (B)
Q. 20 (A)
Q. 21 (B)

19

$$
\begin{aligned}
& \frac{P^{0}-P_{s}}{P_{s}}=\frac{n_{A}}{n_{B}} \\
& \frac{P^{0}-\frac{4}{5} P_{0}}{\frac{4}{5} P_{0}}=\frac{\frac{w}{60}}{\frac{180}{18}}
\end{aligned}
$$

$\mathrm{w}=150 \mathrm{gm}$

Comprehension \# 3 (Q. No. 22 to 24)
Q. 22 (A)
Q. 23 (B)
Q. 24 (B)

22 The composition of the vapour $\left(\mathrm{y}_{\mathrm{A}}\right)$

$$
\begin{align*}
& =\frac{\text { partial pressure }(A)}{\text { total pressure }(p)} \\
& \quad=\frac{p_{A}}{p}=\frac{x_{A} p_{A}^{0}}{p_{B}^{0}+\left(p_{A}^{0}-p_{B}^{0}\right) x_{A}} \tag{1}
\end{align*}
$$

$\operatorname{and}_{y_{B}}=\frac{p_{B}}{p}=1-y_{A}=\frac{x_{B} p_{B}^{0}}{p_{A}^{0}+\left(p_{B}^{0}-p_{A}^{0}\right) x_{A}}$.
To express the total vapour pressure in terms of composition of the vapour phase, rearrange equation (1)
$x_{A}=\frac{y_{A} p_{B}^{0}}{p_{A}^{0}+\left(p_{B}^{0}-p_{A}^{0}\right) y_{A}}$
....(3)
the total pressure over the solution is given by

$$
\mathrm{p}=\mathrm{p}_{\mathrm{B}}^{0}+\left(\mathrm{p}_{\mathrm{A}}^{0}-\mathrm{p}_{\mathrm{B}}^{0}\right) \mathrm{x}_{\mathrm{A}}
$$

Substitute x_{A} in the above equation

$$
p=p_{B}^{0}+\left(p_{A}^{0}-p_{B}^{0}\right) \frac{y_{A} p_{B}^{0}}{p_{A}^{0}+\left(p_{B}^{0}-p_{A}^{0}\right) y_{A}}
$$

i.e., $p=\frac{p_{B}^{0} p_{A}^{0}}{p_{A}^{0}+\left(p_{B}^{0}-p_{A}^{0}\right) y_{A}}$

The plot of p verser y_{A} for a solution in which $p_{A}{ }^{0}>$ $p_{B}{ }^{0}$ is (A), i.e., as the composition of y_{A} increases, the total pressure decreases.
From above question, we have

$$
\frac{1}{p}=\frac{p_{A}^{0}+\left(p_{B}^{0}-p_{A}^{0}\right) y_{A}}{p_{B}^{0} p_{A}^{0}}
$$

$$
\frac{1}{\mathrm{p}}=\frac{1}{\mathrm{p}_{\mathrm{B}}^{0}}+\left(\frac{1}{\mathrm{p}_{\mathrm{A}}^{0}}-\frac{1}{\mathrm{p}_{\mathrm{B}}^{0}}\right) \mathrm{y}_{\mathrm{A}}
$$

Thus a plot of $\frac{1}{\mathrm{p}}$ vs y_{A} gives a linear plot with slope $=$

$$
\left(\frac{1}{p_{A}^{0}}-\frac{1}{p_{B}^{0}}\right)
$$

$\therefore \mathrm{p}_{\mathrm{A}}{ }^{0}=\frac{\mathrm{y}_{\mathrm{A}} \mathrm{p}}{\mathrm{x}_{\mathrm{A}}}=\frac{0.35 \times 600}{0.70}=300$ torr similarly $\mathrm{p}_{\mathrm{B}}{ }^{0}=\frac{\mathrm{y}_{B} p}{\mathrm{x}_{\mathrm{B}}}=\frac{0.65 \times 600}{0.30}=1300$ torr

Comprehension \# 4 (Q. No. 25 to 30)
Q. 25 (B)
Q. 26 (A)
Q. 27 (C)
Q. 28 (A)
Q. 29 (C)
Q. 30 (C)

25 Benzene is more volatile than toluene.
26 from fig. $\mathrm{p}_{\text {toluene }}^{0}\left(25^{\circ} \mathrm{C}\right)=30 \mathrm{~mm}$ of Hg .
27 For boiling at $25^{\circ} \mathrm{C}$ vapour pressure of solution $=$ pressure above the solution.

$$
\begin{aligned}
& =\mathrm{X}_{\mathrm{T}} \mathrm{P}_{\mathrm{T}}{ }^{\circ}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{\circ}=0.6(30)+0.4 \times 100 \\
& =18+40=58 \text { torr }
\end{aligned}
$$

from graph $\simeq 60$ torr.
Vapour contains equal no. of moles of benzene and volume. $\mathrm{So} \mathrm{X}_{\mathrm{T}}{ }^{\prime}=\mathrm{X}_{\mathrm{B}}{ }^{\prime}$

Now $\quad \frac{1}{P_{\text {Total }}}=\frac{X_{T}^{\prime}}{P_{T}^{\circ}}+\frac{X_{B}^{\prime}}{P_{B}^{\circ}}=$
$\frac{1}{2}\left\{\frac{1}{30}+\frac{1}{100}\right\}=\frac{1}{2}\left\{\frac{100+30}{300}\right\}$

$$
\begin{aligned}
& \mathrm{P}_{\text {Total }}=\frac{6000}{130}=\mathrm{X}_{\mathrm{T}} \mathrm{P}_{\mathrm{T}}{ }^{\circ}+\left(1-\mathrm{X}_{\mathrm{T}}\right) \mathrm{P}_{\mathrm{B}}^{\circ}{ }^{\circ} \\
& =\mathrm{P}_{\mathrm{B}}^{\circ}+\mathrm{X}_{\mathrm{T}}\left(\mathrm{P}_{\mathrm{T}}^{\circ}-\mathrm{P}_{\mathrm{B}}^{\circ}\right) \\
& =100+\mathrm{X}_{\mathrm{T}}(30-100)=100-70 \mathrm{X}_{\mathrm{T}} \\
& \Rightarrow \mathrm{X}_{\mathrm{T}}=0.77
\end{aligned}
$$

$\mathrm{P}_{\text {Total }}=\mathrm{X}_{\mathrm{T}} \mathrm{P}_{\mathrm{T}}{ }^{\circ}+\left(1-\mathrm{X}_{\mathrm{T}}\right) \mathrm{P}_{\mathrm{B}}{ }^{\circ}$ \& $\mathrm{P}_{\text {Total }}=\mathrm{P}_{\mathrm{B}}{ }^{\circ}+\mathrm{P}_{\mathrm{T}}{ }^{\circ}$
$=\left(1-X_{B}\right) P_{T}{ }^{\circ}+X_{B} P_{B}{ }^{\circ}$
both will be valid if $X_{T}=0$
or $X_{B}=0$.
Q. 31 (A) $-\mathrm{q}, \mathrm{s}$; (B) $-\mathrm{q}, \mathrm{s}$; (C) $-\mathrm{q}, \mathrm{s}$; (D) $-\mathrm{q}, \mathrm{s}$

No of particles \downarrow, so vapour pressure \uparrow, i \downarrow $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{mK}_{\mathrm{f}} \mathrm{i}$
$\Delta \mathrm{T}_{\mathrm{f}} \downarrow$, freezing point \uparrow.
Q. 32 (A) - $\mathrm{Q},(\mathrm{B})-\mathrm{P},(\mathrm{C})-\mathrm{R}$
$\mathbf{P} \rightarrow \mathbf{Q}$
where solute-solvent interaction solute-solvent interaction. then ideal solution.
B- solute-solvent interaction are weaker than solutesolvent so it shows positive deviation.
C- solute-solvent interactions stronger than solutesolvent interaction it will show negative deviation.
Q. 33 (A) $-\mathrm{p}, \mathrm{r}, \mathrm{s} ;(\mathrm{B})-\mathrm{q}, \mathrm{r} ;(\mathrm{C})-\mathrm{q}, \mathrm{r} ;(\mathrm{D})-\mathrm{r}$
(A) Positive deviation : $\Delta \mathrm{H}>0, \Delta \mathrm{~S}>0$

$$
\left(\mathrm{P}_{\mathrm{T}}\right)_{\text {calcul ate }}<
$$

$\left(\mathrm{P}_{\mathrm{T}}\right)_{\text {observed }}$
(B) Maximum boiling azeotrope $=$ Negative deviation :
$\Delta S>0$.
(C) $\mathrm{P}_{\text {calculate }}: 100 \times 0.5+200 \times 0.5=150$.

$$
\left(\mathrm{P}_{\mathrm{T}}\right)_{\text {calculate }}>
$$

$\left(\mathrm{P}_{\mathrm{T}}\right)_{\text {observed }}$
Negative deviation : $\Delta S>0$.
(D) Ideal solution : $\Delta \mathrm{S}>0$.
Q. 34 (A) -r, (B) - t, (C) -s, (D) -p, (E) - q
Q. 35 (A) - (p, s, r); (B)-(p, q, t); (C) - (p); (D) - (p, q, t)
(A) Acetone $+\mathrm{CHCl}_{3}$-ve devation from Raoult's law $\Delta S>0 \Delta H<0 \Delta V<0$
Maximum Boiling Azeotropes.
(B) Ethanol + Water + ve Deviation from Raoult's law $\Delta S>0 \Delta H>0 \Delta V>0$ Minimum Boiling Azeotropes
(C) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5}$ IIdeal solution No Azeotropes $\Delta \mathrm{H}=$ $0 \Delta \mathrm{~V}=0$
(D) Acetone + Benzene +ve Deviation from Raoults law $\Delta \mathrm{H}>0 \quad \Delta \mathrm{~V}>0 \Delta \mathrm{~S}>0$ Minimum Boiling Azeotropes.

NUMERICAL VALUE BASED

Q. 1 [8]

Q. 2 [3]
$\mathrm{fe}_{4}\left[\mathrm{fe}(\mathrm{CN})_{6}\right]_{3} \rightleftharpoons 4 \mathrm{fe}^{3+}+3\left[\mathrm{fe}(\mathrm{CN})_{6}\right]^{4}$
$\mathrm{n}=7$
$l=1+(\mathrm{n}-1) \mathrm{a}=1+6 \mathrm{a}$
$l=1+6 \times 1=7$
$\mathrm{P}=7 \times 2 \times 0.08 \times 300=326$
$112 \mathrm{n}=336$
$\mathrm{X}=3$
Q. 3 [5]
Q. 4 [3]

$$
\Delta \mathrm{T}_{\mathrm{f}}=(1.86)\left[\left(\mathrm{n}_{\text {area }}+\mathrm{n}_{\text {glucose }}\right) 10\right] \hat{\mathrm{e}}
$$

\because Solution has 5% by weight urea and 10% by weight glucose
$\because \%$ by weight $=\frac{\text { weight os solute }}{\text { weight of solution }} \times 100$
\because wt. of water $=85 \mathrm{~g}$; wt. of urea $=5 \mathrm{~g}$; wt. of glucose $=10 \mathrm{~g}$
$\Delta \mathrm{T}_{\mathrm{f}}=\Delta \mathrm{T}_{\text {area }}+\Delta \mathrm{T}_{\text {glucose }}$
Q. 5 [3]

$$
\begin{aligned}
& \pi=C R T x_{i} \\
& \pi=\frac{\mathrm{n}}{\mathrm{~V}} R \mathrm{RTx}_{\mathrm{i}} \\
& \therefore 0.75=\frac{\mathrm{n}}{2.5} \times 0.0821 \times 300 \times 2.47 \\
& \mathrm{n}=\frac{0.75 \times 2.5}{0.0821 \times 300 \times 2.47} \\
& \mathrm{n}=0.03 \text { mole }=3 \times 10^{-2}
\end{aligned}
$$

Q. 6 [6]
Q. $7 \quad$ [2]
Q. 8 [2]
Q. 9 [5]
$\Delta T_{f}=i \times k_{f} \times m$
$0.558=i \times 1.86 \times 0.1$
$i=3, \alpha=1$
$\alpha=\frac{i-1}{n-1}, n=3$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
$x=5$

KVPY

PREVIOUS YEAR’S

Q. 1 (A)

$$
\mathrm{P}_{\text {total }}=\chi_{\mathrm{B}}\left(\mathrm{P}_{\mathrm{B}}^{0}\right)+\chi_{\mathrm{T}}\left(\mathrm{P}_{\mathrm{T}}^{0}\right)=\chi_{\mathrm{B}}\left(\mathrm{P}_{\mathrm{B}}^{0}\right)+\left(1-\chi_{\mathrm{B}}\right)\left(\mathrm{P}_{\mathrm{T}}^{0}\right)
$$

Comparing it with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$

$$
\frac{\mathrm{P}_{\mathrm{total}}}{\mathrm{y}}=\frac{\chi_{\mathrm{B}}}{\mathrm{x}} \underbrace{\left(\mathrm{P}_{\mathrm{B}}^{0}-\mathrm{P}_{\mathrm{T}}^{0}\right.}_{\mathrm{m}})+\underbrace{\mathrm{P}_{\mathrm{T}}^{0}}_{\mathrm{c}}
$$

Q. 2 (C)

$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Cu}^{2 \oplus}+\mathrm{SO}_{4}^{2 \ominus}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} . \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}=2 \times 0.512 \times 0.1=0.1024$
$\mathrm{T}_{\mathrm{b}}{ }^{\prime}=\mathrm{T}_{\mathrm{b}}{ }^{0}+\Delta \mathrm{T}_{\mathrm{b}}=100+0.1024=100.10$
Q. 3 (C)
$2 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq},} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g})$
It is a common trend that n -factor $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is taken as ' 2 ' By the definition of volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ if we consume 1ℓ of $1 \mathrm{NH}_{2} \mathrm{O}_{2}$ in the above equation we are using 1 gram equivalent of $\mathrm{H}_{2} \mathrm{O}_{2} \equiv 0.5$ moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ (by using n -factor $=2$)

This will produce $\frac{1}{4}$ moles of O_{2} gas at N.T.P.
$\equiv \frac{1}{4} \times 22.4=5.6 \ell$ of O_{2} gas
i.e. $1 \ell, 1 \mathrm{NH}_{2} \mathrm{O}_{2}$ solution gives $5.6 \ell \mathrm{O}_{2}$ at N.T.P.

Hence $1 \mathrm{~N} \equiv 5.6$ 'vol'. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution
In the given question it is $1.76 \mathrm{~N} \mathrm{H}_{2} \mathrm{O}_{2}$ solution
Hence volume strength $=5.6 \times 1.79 \simeq 10$ volumes
Q. 4 (C)

Mass of solution $=\mathrm{d}^{\prime \prime} \times \mathrm{v}$ " $=1.9 \times 250=475$ gram
Mass of solvent $=(475-3)=472$ gram
Molality $=\frac{3 \times 1000}{126 \times 472}=0.05$
Normality $=\frac{3 \times 1000}{63 \times 250}=0.19$
Q. 5 (A)
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{ik}_{\mathrm{b}} \mathrm{m}$
So order of boiling point is dependent on (im) so order of $\mathrm{BP} \Rightarrow \mathrm{CH}_{3} \mathrm{COOH}<\mathrm{NaCl}<\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{K}_{3} \mathrm{PO}_{4}$.

Q. 6 (C)

Higher the value of K_{H} of gas lower will be its solubility.
So order of solubility $\Rightarrow \mathrm{CH}_{4}>\mathrm{CO}_{2}>\mathrm{O}_{2}>\mathrm{Ar}$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1
[2]
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$0.93=\mathrm{i} \times 1.86 \times 1 \quad \therefore \mathrm{i}=\frac{1}{2}$
$\therefore \frac{1}{2}=1+\left(\frac{1}{\mathrm{n}}-1\right) 1 \quad \therefore \mathrm{n}=2$
Q. 2 [6]
meq. of $\mathrm{NaOH}=$ meq. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$\mathrm{M} \times 1 \times 4.4=1.25 \times 2 \times 10$
$\mathrm{M}=5.68 \mathrm{M}$
Q. 3 [2.747]
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{im} \mathrm{K} \mathrm{b}_{\mathrm{b}}$
$2.5=(1+(2-1) \times 0.75) \times \mathrm{m} \times 0.52$
$2.5=1.75 \times \mathrm{m} \times 0.52$
$\mathrm{m}=\frac{2.5}{1.75 \times 0.52}=2.747$
Q. $4 \quad[101.768]$
$\mathrm{A}_{2} \mathrm{~B}_{3} \longrightarrow 2 \mathrm{~A}^{+3} \mathrm{~B}^{-2}$
No. of Ions $=2+3=5$
$\mathrm{i}=1+(\mathrm{n}-1) \alpha=1+(5-1) \times .6$

$$
=1+4 \times .6=1+2.4=3.4
$$

$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m} \times \mathrm{i}$

$$
=0.52 \times 1 \times 3.4=1.768^{\circ} \mathrm{C}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {Solution }}\left[\left(\mathrm{T}_{\mathrm{b}}\right)_{\mathrm{H}_{2} \mathrm{O}}\right]_{\text {Solvent }}$
$1.768=\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {Solution }}-100$
$\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {Solution }}=101.768^{\circ} \mathrm{C}$
Q. 5 [35]
Q. 6 [0.2]
$\mathrm{M}=\frac{\mathrm{n}}{\mathrm{V}}=\frac{4.5 / 90}{2.50 / 1000}=0.2$
Q. 7 [1.09]
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$=5.12 \times \frac{10}{58} \times \frac{1000}{200}=4.41^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{f}}=\left(\mathrm{T}_{\mathrm{F}}\right)_{\text {Solvent }}-\left(\mathrm{T}_{\mathrm{F}_{1}}\right)_{\text {Solvent }}$
$=4.41^{\circ} \mathrm{C}=5.5-\left(\mathrm{T}_{\mathrm{F}_{1}}\right)_{\text {Solvent }}$

$$
\left(\mathrm{T}_{\mathrm{F}_{1}}\right)_{\text {Solvent }}=5.5-4.41=1.09^{\circ} \mathrm{C}
$$

Q. 8 [100]
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}{ }^{0}$
100.52-100
$=0.52^{\circ} \mathrm{C}$
$\mathrm{i}=\left(1-\frac{\alpha}{2}\right)$
$\mathrm{Q} \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$0.52=\left(1-\frac{\alpha}{2}\right) \times 0.52 \times 2$
$\alpha=1$
So, percentage association $=100 \%$.

Q. 9 [50]

$\Delta \mathrm{T}_{\mathrm{f}}=(1+\alpha) \mathrm{Kf} . \mathrm{m}$
$\alpha=0.05=50 \times 10-3$

Q. 10 [1389]

$\mathrm{P}=\mathrm{K}_{\mathrm{H}} \cdot \mathrm{x}$
or, $20 \times 10^{3}=\left(8 \times 10^{4} \times 10^{3}\right) \times \frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{n}_{\mathrm{O}_{2}}+\mathrm{n}_{\text {water }}}$
or, $\frac{1}{4000}=\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{n}_{\mathrm{O}_{2}}+\mathrm{n}_{\text {water }}}=\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{n}_{\text {water }}}$
Means 1 mole water $(=18 \mathrm{gm}=18 \mathrm{ml})$ dissolves
$\frac{1}{4000}$ moles O_{2}. Hence, molar solubility
$=\frac{\left(\frac{1}{4000}\right)}{18} \times 1000=\frac{1}{72}$ moldm $^{-3}$
$=1388.89 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \approx 1389 \mathrm{~mol} \mathrm{dm}^{-3}$

Q. 11 [64]

100 molal aqueous solution means there is 100 mole solute in $1 \mathrm{~kg}=1000 \mathrm{gm}$ water.
Now,
mole-fraction of solute $=\frac{n_{\text {solute }}}{n_{\text {solute }}+n_{\text {solvent }}}$
$=\frac{100}{100+\frac{1000}{18}}=\frac{1800}{2800}=0.6428$
$=64.28 \times 10^{2}$

Q. 12 [85]

$\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \rightleftharpoons 4 \mathrm{~K}^{+}+\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$ Initial conc. 1 m 0
$\begin{array}{llll}\text { Final conc. } & \begin{array}{ll}(1-0.4) \mathrm{m} \\ =0.6 \mathrm{~m}\end{array} & \begin{array}{l}4 \times 0.40 .4 \mathrm{~m} \\ \\ \end{array} & 1.6 \mathrm{~m}\end{array} \quad$ Q.22 $\quad[25]$
Effective molality $=0.6+1.6+0.4=2.6 \mathrm{~m}$
For same boiling point, the molality of another solution should also be 2.6 m .
Now, 18.1 weight percent solution means 18.1 gm solute is present in 100 gm solution and hence, $(100-18.1=) 81.9 \mathrm{gm}$ water.
Now, $2.6=\frac{18.1 / \mathrm{M}}{81.9 / 1000}$
Q. 23 [4]
Q. 24 [1]
Q. 25 [78]
Q. 26 [50]
Q. 27 [269]
Q. 13 [19]

Given $=\mathrm{P}_{\mathrm{A}}^{0}=21 \mathrm{kPa} \quad \Rightarrow \mathrm{P}_{\mathrm{B}}^{0}=18 \mathrm{kPa}$
\rightarrow An Ideal solution is prepared by mixing $1 \mathrm{~mol} A$ and 2 molB .
$\rightarrow X_{A}=\frac{1}{3}$ and $X_{B}=\frac{2}{3}$
\rightarrow Acc to Raoult's low
$\mathrm{P}_{\mathrm{T}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{0}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{0}$
$\Rightarrow \mathrm{P}_{\mathrm{T}}=\left(\frac{1}{3} \times 21\right)+\left(\frac{2}{3} \times 18\right)$
$\Rightarrow \mathrm{P}_{\mathrm{T}}=7+12=19 \mathrm{KPa}$
Q. 14 [106]
$\mathrm{AB}_{2} \rightarrow \mathrm{~A}^{2+}+2 \mathrm{~B}^{-}$
$\mathrm{t}=0 \mathrm{a} \quad 0 \quad 0$
$\mathrm{t}=\mathrm{t} \mathrm{a}-\mathrm{a} \alpha \mathrm{a} \alpha 2 \mathrm{a} \alpha$
$\mathrm{nT}=\mathrm{a}-\mathrm{a} \alpha+\mathrm{a} \alpha+2 \mathrm{a} \alpha$
$=\alpha(1+2 \alpha)$
so $i=1+2 \alpha$
Now $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{m} \times \mathrm{K}_{\mathrm{b}}$
$\Delta \mathrm{T}_{\mathrm{b}}=(1+2 \alpha) \times \mathrm{m} \times \mathrm{K}_{\mathrm{b}}$
$\alpha=0.1 \quad \mathrm{~m}=10 \mathrm{~K}=0.5$
$\Delta \mathrm{T}_{\mathrm{b}}=1.2 \times 10 \times 0.5$
$=6$
So boiling point $=106$
Q. 15 [9]
Q. 16 [125]
Q. 17 [1575]
Q. 18 [15]
Q. 19 [5]
Q. 20 [250]
Q. 21 [18]
Q. 28 [4]
Q. 29 [3]
Q. 30 [271]
Q. 31 [310]
Q. 32 [518]
Q. 33 [20]
Q. 34 (4)
Q. 35 [13]
Q. 36 [13]
Q. 37 [64]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1

$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$=4 \times 1.86 \times \frac{0.1}{329 \times 0.1}=2.3 \times 10^{-2}$
$\Rightarrow \mathrm{T}_{\mathrm{f}}=0-2.3 \times 10^{-2}=-2.3 \times 10^{-2}{ }^{\circ} \mathrm{C}$.
Q. 2 (A)
$\Delta \mathrm{T}_{\mathrm{b}}=2^{\circ} \mathrm{C} ; \mathrm{m}_{\mathrm{a}}=2.5 \mathrm{~g}$
$m_{\text {solvent }}=100 \mathrm{~g}$
$\mathrm{K}_{\mathrm{b}}=0.76 \mathrm{~K} . \mathrm{kg} . \mathrm{mol}^{-1}$
$\mathrm{P}_{\text {solution }}=$?
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$2=0.76 \times \mathrm{m}$
$\therefore \mathrm{m}=\frac{2}{0.76}$
$\frac{\mathrm{P}^{0}-\mathrm{P}}{\mathrm{P}}=\mathrm{m} \times \mathrm{MM} \times 10^{-3} \quad \therefore \frac{760-\mathrm{P}}{\mathrm{P}}=\frac{2}{0.76} \times$
18×10^{-3}
$760-\mathrm{P}=\frac{36}{760} \mathrm{P} \quad \therefore 760=\frac{796}{760} \mathrm{P}$
$\therefore \mathrm{P}=760\left(\frac{796}{760}\right)$ torr $=725.6$ torr ≈ 724 torr
Q. 3 (D)
$\Delta \mathrm{G}=-\mathrm{ve}$,
$\Delta S_{\text {system }}=+$ ve Always for solution formation.
$\Delta S_{\text {surr. }}=0$
No heat exchange between solution and surrounding. $\Delta \mathrm{H}=0 \quad$ For ideal solution.
Q. 4 (2)
$\mathrm{MX}_{2} \rightleftharpoons \mathrm{M}^{2+}+2 \mathrm{X}^{-}$
$\mathrm{m}_{0}(1-\alpha) \quad \mathrm{m}_{0} \alpha$
$2 \mathrm{~m}_{0} \alpha ; \mathrm{m}=\mathrm{m}_{0}(1+2 \alpha)$
$\therefore \mathrm{m}=\mathrm{m}_{0}(1+2 \times 0.5)=2 \mathrm{~m}_{0}$ (as given) $\frac{\left(-\Delta T_{f}\right)_{\text {observed }}}{\left(-\Delta T_{f}\right)_{\text {undissociated }}}=i=\frac{m}{m_{0}}=2$
Q. 5 [1]

$$
\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \times \mathrm{i} \times \mathrm{m}
$$

$0.0558=1.86 \times \mathrm{i} \times 0.01$
$\mathrm{i}=3$
Given complex behaves as a strong electrolyte

$$
\alpha=100 \%
$$

$\mathrm{n}=3$ (no. of particles given by complex)
\therefore complex is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
no. of Cl^{-}ions in the co-ordination sphere of the complex $=1$

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \times \mathrm{i} \times \mathrm{m} \\
& 0.0558=1.86 \times \mathrm{i} \times 0.01 \\
& \mathrm{i}=3
\end{aligned}
$$

Q. 6 (A, B)
Q. 7 (A)

As T increase, V.P. increases. So C \& D options get rejected.
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$273-\mathrm{T}_{\mathrm{f}}=2 \times \frac{34.5 / 46}{0.5}$
$\therefore \mathrm{T}_{\mathrm{f}}=270 \mathrm{~K}$
Q. 8 (BD)

For a mixture of two liquids L and M,

For ideal solution obey Raoult's law
$\mathrm{P}_{\mathrm{L}}=\left(1-\mathrm{X}_{\mathrm{M}}\right) \mathrm{P}_{\mathrm{L}}{ }^{\circ}=\mathrm{P}_{\mathrm{L}}{ }^{\circ}-\mathrm{X}_{\mathrm{M}} \mathrm{P}_{\mathrm{L}}{ }^{\circ}$
Graph between $\mathrm{P}_{\mathrm{L}} \& \mathrm{X}_{\mathrm{M}}$ has intercept $=\mathrm{P}_{\mathrm{L}}{ }^{\circ}$ \& slope $=$ - ve

But graph representing +ve deviation from Raoult's law therefore $\mathrm{M}-\mathrm{L}<\mathrm{M}-\mathrm{M}$ or $\mathrm{L}-\mathrm{L}$ Point Z represents intercept which is $\mathrm{P}_{\mathrm{L}}{ }^{\circ}$ when $\mathrm{X}_{\mathrm{L}} \rightarrow 1$
Q. 9
[19]
$45=\mathrm{P}_{\mathrm{A}}^{\circ} \times \frac{1}{2}+\mathrm{P}_{\mathrm{B}}^{\circ} \times \frac{1}{2}$
$\mathrm{P}_{\mathrm{A}}^{\circ}+\mathrm{P}_{\mathrm{B}}^{\circ}=90$.
given $\mathrm{P}_{\mathrm{A}}^{\circ}=20$ torr
$\mathrm{P}_{\mathrm{B}}^{\circ}=70$ torr
$\Rightarrow 22.5$ torr $=20 \mathrm{x}_{\mathrm{A}}+70\left(1-\mathrm{x}_{\mathrm{A}}\right)$ $=70-50 \mathrm{x}_{\mathrm{A}}$
$\mathrm{X}_{\mathrm{A}}=0.05$
So $\frac{\mathrm{x}_{\mathrm{A}}}{\mathrm{x}_{\mathrm{B}}}=\frac{0.95}{0.05}=19$
Q. 10 [0.05]

From graph
For solvent $X^{\prime} \quad \Delta T_{b x}=2$
$\Delta \mathrm{T}_{\mathrm{bx}}=\mathrm{m}_{\mathrm{NaCl}} \times \mathrm{K}_{\mathrm{b}(\mathrm{x})} \quad$......(1)
For solvent ' $\mathrm{Y}^{\prime} \quad \Delta \mathrm{T}_{\text {by }}=1$
$\Delta \mathrm{T}_{\mathrm{b}(\mathrm{y})}=\mathrm{m}_{\mathrm{NaCl}} \times \mathrm{K}_{\mathrm{b}(\mathrm{y})} \quad$......(2)
Equation (1)/(2)
$\Rightarrow \frac{\mathrm{K}_{\mathrm{b}(\mathrm{x})}}{\mathrm{K}_{\mathrm{b}(\mathrm{y})}}=2$
for solute S
2(S) $\rightarrow \mathrm{S}_{2}$
$\begin{array}{cc}1 \\ 1-\alpha\end{array} \quad \alpha / 2$
$\mathrm{i}=(1-\alpha / 2)$
$\Delta \mathrm{T}_{\mathrm{b}(\mathrm{x})(\mathrm{s})}=\left(1-\frac{\alpha_{1}}{2}\right) \mathrm{K}_{\mathrm{b}(\mathrm{x})}$
$\Delta \mathrm{T}_{\mathrm{b}(\mathrm{y})(\mathrm{s})}=\left(1-\frac{\alpha_{2}}{2}\right) \mathrm{K}_{\mathrm{b}(\mathrm{y})}$
Given $\Delta \mathrm{T}=\Delta \mathrm{T}_{\mathrm{b}(\mathrm{x})(\mathrm{s})}=3 \Delta \mathrm{~T}_{\mathrm{b}(\mathrm{y})(\mathrm{s})}$
$\left(1-\frac{\alpha_{1}}{2}\right) \mathrm{K}_{\mathrm{b}(\mathrm{x})}=3 \times\left(1-\frac{\alpha_{2}}{2}\right) \times \mathrm{k}_{\mathrm{b}(\mathrm{y})}$
$2\left(1-\frac{\alpha_{1}}{2}\right)=3\left(1-\frac{\alpha_{2}}{2}\right)$
$\alpha_{2}=0.7$
so $\alpha_{1}=0.05$
Q. 11 [1.02 or 1.03]
$\frac{\mathrm{P}^{\mathrm{o}}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}^{\mathrm{o}}}=\frac{\mathrm{n}_{\text {solute }}}{\mathrm{n}_{\text {solute }}+\mathrm{n}_{\text {solute }}}$
$\frac{650-640}{650}=\frac{\mathrm{n}_{\text {solute }}}{\mathrm{n}_{\text {solute }}+0.5}$
$n_{\text {solute }}=\left(\frac{5}{640}\right)$
Molality $=\frac{5 \times 1000}{640 \times 39}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{m} \times \mathrm{K}_{\mathrm{b}}$

$$
=\frac{5.12 \times 5 \times 1000}{640 \times 39}
$$

$\Delta \mathrm{T}_{\mathrm{f}} \approx 1.0256$
Q. 12 [0.20]
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{0} \mathrm{X}_{\mathrm{B}}$
$0.3=\mathrm{P}_{\mathrm{A}}^{0} \times 0.25+\mathrm{P}_{\mathrm{B}}^{0} \times 0.75$
$0.4=\mathrm{P}_{\mathrm{A}}^{0} \times 0.5+\mathrm{P}_{\mathrm{B}}^{0} \times 0.5$
$0.8=\mathrm{P}_{\mathrm{A}}^{0}+\mathrm{P}_{\mathrm{B}}^{0}$
on solving eq ${ }^{\text {n }}$ (i) \& (ii)
$\mathrm{P}_{\mathrm{A}}^{0}=0.6, \mathrm{P}_{\mathrm{B}}^{0}=0.2$

Question Stem for Question Nos. 13 and 14

Q. 13 [100.10]

$$
\begin{gathered}
\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \\
0.1 \mathrm{~m} \quad 0.1 \mathrm{~m}
\end{gathered}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=0.2 \times 0.5$

$$
=0.1^{\circ} \mathrm{C}=0.1 \mathrm{~K}
$$

Boiling point of solution $=100.1^{\circ} \mathrm{C}$

$$
=X
$$

Q. $14 \quad$ [2.50]
$\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$ $0.05 \mathrm{~m} \quad 0.05 \mathrm{~m} \quad 0.05 \mathrm{~m}$
$\mathrm{BaCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
$0.05 \mathrm{~m} \quad 0.05 \mathrm{~m} \quad 0.1 \mathrm{~m}$
Ag^{+}and Cl^{-}combine to form AgCl precipitate $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})$
$\mathrm{t}=0 \quad 0.05 \mathrm{~m} \quad 0.1 \mathrm{~m}$
$\mathrm{t}=\infty \quad 0 \quad 0.05 \mathrm{~m}$
In final solution total concentration of all ions :
$[\mathrm{Cl}-]+\left[\mathrm{NO}_{3}^{-}\right]+\left[\mathrm{Ba}^{2+}\right]=0.05+0.05+0.05$ $=0.15 \mathrm{~m}$
$\Delta \mathrm{T}_{\mathrm{b}}=0.5 \times 0.15$ $=0.075^{\circ} \mathrm{C}$
B.P. of solution 'B' $=100.075^{\circ} \mathrm{C}$
B.P. of solution 'A' $=100.1^{\circ} \mathrm{C}$
$|\mathrm{V}|=100.1-100.075$
$=0.025=2.5 \times 10^{-2}$

Electrochemistry

EXERCISES

Elementary

Q. 1 (3)

In the electrolytic cell electrical energy change into chemical energy.
Q. 2 (3)

Velocities of both K^{+}and NO_{3}^{-}are nearly the same in KNO_{3} so it is used to make salt-bridge.
Q. 3 (3)

$$
\mathrm{E}^{0}=\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}+\mathrm{E}_{{\mathrm{Cu} / \mathrm{Cu}^{2+}}_{0}^{0}=0.80-0.34=+0.46 \mathrm{~V} . . .}
$$

Q. 4 (4)
$\mathrm{Cu}+\mathrm{FeSO}_{4} \rightarrow$ No reaction \quad Because Cu has
$\mathrm{E}^{\circ} \mathrm{Cu}^{2+} / \mathrm{Cu}=0.34$ volt and Fe has
$\mathrm{E}^{\circ} \mathrm{Fe}^{2+} / \mathrm{Fe}=-0.44$ volt.
Q. 5 (1)

More negative is the reduction potential, higher will be the reducing property, i.e. the power to give up electrons.
Q. 6 (4)
Q. 7 (2)
Q. 8 (4)

$$
\begin{aligned}
& \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}^{\circ} \\
& \Delta \mathrm{G}^{\mathrm{o}}=-2.303 \mathrm{RT} \log \mathrm{~K} ; \mathrm{nFE}^{\circ}=2.303 \mathrm{RT} \log \mathrm{~K} \\
& \log \mathrm{~K}=\frac{\mathrm{nFE}}{2.303 \mathrm{RT}}=\frac{2 \times 96500 \times 0.295}{2.303 \times 8.314 \times 298} \\
& \log \mathrm{~K}=9.97=\mathrm{K}=1 \times 10^{10} .
\end{aligned}
$$

Q. 9 (2)

$$
\mathrm{E}_{\text {cell }}^{\circ}=\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \mathrm{~K}=\frac{0.0591}{\mathrm{n}} \log \mathrm{~K}_{\mathrm{c}} \text { at } 298 \mathrm{~K} .
$$

Q. 10 (1)
Q. 11 (3)
(3) In between dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and platinum electrode
O_{2} gas evolve at anode.
Q. 12 (1)

In fused NaCl chloride ions are oxidized at anode and it is called oxidation.
Q. 13 (1)

When platinum electrodes are dipped in dilute solution $\mathrm{H}_{2} \mathrm{SO}_{4}$ than H_{2} is evolved at cathode.
Q. 14 (1)
(1) Wt. of Ag deposited $=$ Eq.wt of $\mathrm{Ag}=108 \mathrm{gm}$

Wt. of Nideposited $=$ Eq.wt. of $\mathrm{Ni}=29.5 \mathrm{gm}$
Wt. of Cr deposited $=$ Eq. wt. of $\mathrm{Cr}=17.3 \mathrm{gm}$.
Q. 15 (4)

$$
\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \xlongequal[\text { Recharge }]{\stackrel{\text { Dishare }}{=}} 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} .
$$

Sulphuric acid is consumed on discharging.
Q. 16 (4)
(4) Fuel cells are more efficient, free from pollution and they function till reactants are active.
Q. 17 (2)
Q. 18 (4)

Rusting of iron is catalysed by $\left[\mathrm{H}^{+}\right]$.
Q. 19 (2)
Q. 20 (2)

Strong electrolyte ionise completely at all concentrations and the number of ions does not increase on dilution. A small increase in \wedge_{m} with volume on dilution is due to the weakening of electrostatic attraction between the ions on dilution.

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (1)

In galvanic cell/electro chemical cell electrical energy is produced due to some chemical reaction.
Q. 2 (1)

Reduction and electronation take place at cathode elctrode, so it become positive electrode.
Q. 3 (3)

Salt bridge complete the electrical circuit and minimises the liquid-liquid junction potential.
Q. 4 (4)

Agar-Agar is a gelatin, it used in salt bridge along with KCl electrolyte.
Q. 5 (3)

KCl can make precipitate with $\mathrm{AgNO}_{3}, \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ so can't be used along these electrolyte.
Q. 6

In format of anode $\|$ cathode.
Q. 7 (3)
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\mathrm{Ni} / \mathrm{Ni}^{2+}}^{\circ}+\mathrm{E}^{\circ} \mathrm{Ag}^{+} / \mathrm{Ag}$
$=0.25+0.80=\mathbf{1 . 0 5}$ Volt.
Q. 8 (3)

Lowest S.R.P., highest reducing power.
Q. 9 (4)

$$
\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}=0.34 \quad \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.44 \mathrm{volt}
$$

So Cu can't displace Fe^{2+}.
Q. 10 (4)

Cu can't displace Al^{3+} ion from aluminium nitrate.
Q. 11 (1)

Lower S.R.P. containing ion can displace higher S.R.P. containing ion.
Q. 12 (3)

Lower S.R.P. containing ion can displace higher S.R.P. containing ion.
Q. 13 (1)

Lowest S.R.P., highest reducing power.
Q. 14 (1)
$\stackrel{\mathrm{E}^{\circ}}{\mathrm{Fe}^{2+} / \mathrm{Fe}}>\mathrm{E}^{\underline{0}} \mathrm{H}^{+} / \mathrm{H}_{2}$; So, Fe oxidised into Fe^{2+}
$\mathrm{Fe}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2} \quad \mathrm{E}_{\text {Cell }}=+\mathrm{ve}$.
Q. 15 (2)
Q. 16 (1)
E^{0} is intensive property and it do not depend on mass of F_{2} taking part.
Q. 17 (4)
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe},-0.036$ volt
$\mathrm{Fe} \longrightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}, 0.44$ volt
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}+3 \times 0.036 \mathrm{f}-2 \times 0.44 \times \mathrm{f}=-1 \times \mathrm{E}^{\circ}$
$\times \mathrm{f}$
$\mathbf{E}^{\circ}=\mathbf{0 . 7 7 2}$ Volt
Q. 18 (4)
$\mathrm{Cu}++\mathrm{e}-\longrightarrow \mathrm{Cu}, \mathrm{E}^{\circ}=\mathrm{x}_{1}$ Volt
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}, \mathrm{x}_{2}$ Volt
$\mathrm{Cu} \longrightarrow \mathrm{Cu}^{+}+\mathrm{e}^{-}-\mathrm{x}_{1}$ Volt
$\mathrm{Cu}^{2+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}$
$-2 \times \mathrm{x}_{2} \times \mathrm{f}+1 \times \mathrm{x}_{1} \times \mathrm{f}=-1 \times \mathrm{E}^{\mathrm{o}} \times \mathrm{f}$
$\mathrm{E}^{\mathrm{o}}=\mathbf{2} \mathrm{x}_{2}-\mathrm{x}_{1}$
Q. 19 (4)

For spontaneous reaction in every condition
$\mathrm{E}_{\text {cell }}>0, \Delta \mathrm{G}<0$ and Q (reaction quotient) $<\mathrm{K}$ (equilibrium constant).
(3)
$\mathrm{Zn} \longrightarrow \mathrm{Zn}_{\left(\mathrm{C}_{1}\right)}^{2+}+2 \mathrm{e}^{-}$
$\mathrm{Zn}_{\left(\mathrm{C}_{2}\right)}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}$
$\mathrm{Zn}_{\left(\mathrm{C}_{2}\right)}^{2+} \rightleftharpoons \mathrm{Zn}_{\left(\mathrm{C}_{1}\right)}^{2+}$
$\mathrm{E}=0-\frac{0.0591}{2} \log \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$
$\mathrm{E} \rightarrow+$ ve When $\mathrm{C}_{1}<\mathrm{C}_{2}$
Q. 21 (3)
$\mathrm{Hg}_{2}^{2+}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Hg}, 0.789$ Volt
$\mathrm{Hg} \longrightarrow \mathrm{Hg}^{2+}+2 \mathrm{e}^{-},-0.854$ Volt
$\mathrm{Hg}_{2}{ }^{2+} \longrightarrow \mathrm{Hg}+\mathrm{Hg}^{2+},-0.065$ Volt
$\Delta \mathrm{G}=-2 \times(-0.065) \times 96500=-8.314 \times 298 \ln \mathrm{~K}_{\text {eq. }}$
$K_{\text {eq. }}=6.3 \times 10^{-3}$
Q. 22 (2)

Molar ratio
All have the same equivalent
$\&$ mole $=\frac{\text { equiv } .}{\text { nf. }}$

$$
\begin{aligned}
& \Rightarrow \text { ratio }: \frac{1}{1} ; \frac{1}{2}: \frac{1}{3} \\
& \Rightarrow 6: 3: 2
\end{aligned}
$$

Q. 23 (2)

$$
\begin{aligned}
& \frac{2.1}{7} x=\frac{2.7}{27} \times y=\frac{7.2}{48} \times z \\
& \Rightarrow \text { ratio } x=\frac{y}{3}=\frac{z}{2} \\
& \text { If } x=1 \Rightarrow y=3, z=2
\end{aligned}
$$

Q. 24 (4)

$$
\mathrm{A}_{(\mathrm{s})}+\mathrm{B}_{\mathrm{aq} .}^{2+} \longrightarrow \mathrm{A}_{\mathrm{aq} .}^{2+}+\mathrm{B}_{(\mathrm{s})}, \Delta \mathrm{H}^{\circ}=-285 \mathrm{KJ}
$$

Assuming $\Delta \mathrm{S}$ to negligible , $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}=-$ $285 \times 10^{3} \times 0.84=-2 \times \mathrm{E}^{\circ} \times 96500$ $\mathrm{E}^{\circ}=1.24$ Volt
Q. 25 (3)

$$
\begin{aligned}
& \mathrm{E}_{298}^{\circ}=1.1028-0.641 \times 10^{-3} \times 25+0.72 \times 10^{-5} \times \\
& (25)^{2}=1.091275 \text { Volt } \\
& =-8.314 \times 298 \mathrm{ln} \mathrm{~K}=-2 \times 1.091275 \times 96500 \\
& \mathrm{~K}=10^{36.91}=8.128 \times 10^{36}
\end{aligned}
$$

Q. 26 (4)

$$
\begin{aligned}
& \frac{\mathrm{d} \varepsilon}{\mathrm{dt}}=-0.00065 \mathrm{Vol} \mathrm{deg}^{-1} \\
& \Delta \mathrm{~S}_{298}=\text { n.F. } \frac{\mathrm{dE}}{\mathrm{dT}}=2 \times 96500 \times(-0.00065)=-\mathbf{1 2 5 . 5} \mathrm{J} / \mathrm{K}
\end{aligned}
$$

Q. 27 (4)

$$
\begin{aligned}
& \frac{\mathrm{dE}}{\mathrm{dT}}=\frac{(0.6753-0.6915)}{(25-0)}=-6.48 \times 10^{-4} \mathrm{~V} \mathrm{deg}^{-1} \\
& \Delta \mathrm{H}_{298}=-\mathrm{neF}+\mathrm{nFT} \frac{\mathrm{dE}}{\mathrm{dT}}=-2 \times 0.6753 \times 96500+2 \times \\
& 96500 \times 298 \times\left(-6.48 \times 10^{-4}\right) \\
& =2 \times 96500(-0.6753-0.1931)=-\mathbf{1 6 7 . 6} \mathbf{K J}
\end{aligned}
$$

Q. 28 (4)
$\mathrm{E}^{\circ}=1.1028-0.641 \times 10^{-3} \mathrm{~T}+0.72 \times 10^{-5} \mathrm{~T}^{2}$
$\left(\frac{\mathrm{dE}^{\mathrm{o}}}{\mathrm{dT}}\right)_{2 \mathrm{~S}}=-0.641 \times 10^{-3}+2 \times 0.72 \times 10^{-5} \mathrm{~T}=(-0.641+$ $0.36) \times 10^{-3}=-0.281 \times 10^{-3}$
$\Delta \mathrm{S}^{\circ}=\mathrm{nF} \frac{\mathrm{dE}^{\circ}}{\mathrm{dT}}=2 \times 96500 \times\left(-281 \times 10^{-3}\right)=\mathbf{- 5 4 . 2 3}$
EU
Q. 29 (3)

$$
2 \mathrm{e}^{-}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}: 0.337
$$

$$
\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}: 0.153
$$

$$
\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{e}^{-} ;-0.153
$$

$$
\mathrm{e}^{-}+\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}
$$

$$
\mathrm{E}_{\mathrm{Cu}^{+} / \mathrm{Cu}}=\frac{2 \times 0.337-1 \times 0.153}{1}
$$

$$
=0.674-0.153
$$

$$
=0.521 \mathrm{~V}
$$

Q. 30 (1)
$\wedge=\frac{1000 \times K}{M}$
On decreasing the value of M will increase but increase will be hyberbolic.
Q. 31 (1)
$\mathrm{E}=\mathrm{E}^{0}-\frac{0.0591}{\mathrm{n}} \log \frac{[\text { Product }]}{[\text { Reactant }]}$
if $\frac{[\text { Product }]}{[\text { Reactant }]}=1$ then $\mathrm{E}=\mathrm{E}^{0}$.
Q. 32 (1)

$$
\mathrm{E}=1.1-\frac{0.0591}{2} \log \frac{0.1}{0.1} \quad \Rightarrow \mathbf{E}=\mathbf{1 . 1 0} \text { Volt }
$$

Q. 33 (2)
$\mathrm{H}_{2_{\left(\mathrm{p}_{1}\right)}} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2\left(\mathrm{p}_{2}\right)}$
$\mathrm{X}_{2_{\left(p_{1}\right)}} \longrightarrow \mathrm{X}_{2_{\left(p_{2}\right)}}$
$E=0-\frac{0.0591}{2} \log \frac{p_{2}}{p_{1}}$
$\mathrm{P}_{2}<\mathrm{P}_{1}$ for $\mathrm{E} \rightarrow+\mathrm{ve}$
Q. 34 (2)
$\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}_{\left(10^{-2} \mathrm{M}\right)}^{+}+2 \mathrm{e}^{-}$
$2 \mathrm{H}^{+}{ }_{\left(10^{-3} \mathrm{M}\right)}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}$
$2 \mathrm{H}_{\left(10^{-3} \mathrm{M}\right)}^{+} \longrightarrow 2 \mathrm{H}_{\left(10^{-2} \mathrm{M}\right)}^{+}$
$E=0-\frac{0.0591}{2} \log \left(\frac{10^{-1}}{10^{-2}}\right)^{2}$
$\mathrm{E} \rightarrow$ - ve (Non spontaneaous).
Q. 35 (3)
$0=(-0.151-0)-\frac{0.0591}{1} \log \left[\mathrm{H}^{+}\right]$
$0.0591 \times \log \left[\mathrm{H}^{+}\right]=-0.151$
$\mathrm{pH}=\frac{0.151}{0.0591}=\mathbf{2 . 5 6}$
Q. 36 (2)
$\mathrm{E}_{\mathrm{Ag} \mid \mathrm{AgI\mid I}}^{0}=\mathrm{E}_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}^{0}-\frac{0.0591}{1} \log \frac{1}{\mathrm{~K}_{\mathrm{SP}}}$
$-0.151=0.799-\frac{0.0591}{1} \log \frac{1}{\mathrm{~K}_{\text {sp }}}$
$0.0591 \log \mathrm{~K}_{\mathrm{sp}}=-0.151-0.799$
$\log K_{s p}=-16.074$
$K_{\text {sp }}=8.43 \times 10^{-17}$
Q. 37 (4)
$\mathrm{E}_{\mathrm{Ag} / \mathrm{Ag} / / 1^{-}}=0.8-\frac{0.0591}{1} \log \frac{1}{\mathrm{~K}_{\mathrm{sp}}}$
$=0.8+0.0591 \times \log 8.3 \times 10^{-17}$
$=-0.15$ Volt
or
$\mathrm{E}^{\mathrm{o}}{\mathrm{Ag} / \mathrm{Ag} / \mathrm{I}^{-}}=\mathrm{E}_{\mathrm{Ag} / \mathrm{Ag}^{+}+\frac{\mathrm{RT}}{\mathrm{F}}}^{\mathrm{o}} \cdot \ln \frac{1}{\mathrm{k}_{\mathrm{sp}}}$
$=-0.8-\frac{8.31 \times 298 \times 2.303}{96500} \log \mathrm{k}_{\mathrm{sp}}$
$=-0.8-0.0591 \cdot \log 8.3 \times 10^{-17}$
$=-0.8+0.095=0.15 \mathrm{~V}$.
Q. 38 (1)
$\mathrm{H}_{2}(\mathrm{Pt})(1 \mathrm{~atm})\left|\mathrm{H}_{3} \mathrm{O}^{+}\right|\left|\mathrm{Ag}^{+}{ }_{(\mathrm{xM})}\right| \mathrm{Ag}$
$1.0=(0+0.8)-\frac{0.06}{1} \log \frac{\left[\mathrm{H}^{+}\right]}{\mathrm{x}}$
$-\frac{0.2}{0.06}=\log \frac{\left[\mathrm{H}^{+}\right]}{x}$
$\frac{10}{3}=\mathrm{pH}+\log \mathrm{x}$
$\log x=-1.7$
$\frac{10^{-5.5}}{\mathrm{x}}=1.62 \times 10^{-4}$
$\mathbf{x}=\mathbf{2} \times 10^{-2} \mathrm{M}$
Q. 39 (1)
$\mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H}_{2}, \mathrm{E}^{\circ}=0, \Delta \mathrm{G}^{\circ}=0$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}, \Delta \mathrm{G}^{\circ}=-8.314 \times 298 \ln 10^{-14}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{H}_{2}+\mathrm{OH}^{-},-1 \times \mathrm{E}^{\circ} \times 96500=-8.314$
$\times 298 \ln 10^{-14}$
$\mathrm{E}^{\circ}=-\mathbf{0 . 8 2 8}$ Volt.
Q. 40 (3)
$\mathrm{E}=0-\frac{0.0591}{2} \log \frac{16}{4} \quad=-\frac{0.0591}{2} \times 2 \log 2=-$ $0.0591 \times 0.301=\mathbf{- 0 . 0 1 7 8}$ Volt.
If connected in reverse direction, $\mathrm{E}=0.0178$ volt.
Q. 41 (1)
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{E}_{1}=\mathrm{E}^{\circ}-\frac{0.0591}{5} \log \frac{\left[\mathrm{Mn}^{2+}\right]}{\left[\mathrm{MnO}_{4}^{-}\right] \times 1^{8}}$
$\mathrm{E}_{2}=\mathrm{E}^{\circ}-\frac{0.0591}{5} \log \frac{\left[\mathrm{Mn}^{2+}\right]}{\left[\mathrm{MnO}_{\overline{4}}\right] \times\left(10^{-4}\right)^{8}}=-\frac{0.0591}{5} \times$
$32=-0.37824$
$32=-0.37824$
$\mathrm{E}_{1}-\mathrm{E}_{2}=\mathbf{0} . \mathbf{3 8}$ Volt.
Q. 42 (1)
$0=(-0.771+0.7991)-\frac{0.0591}{1} \log \frac{1}{x}$
$\Rightarrow 0=0.0281+0.0591 \log \mathrm{X}$
$\log X=-\frac{0.0281}{0.0591}$
$\Rightarrow \mathbf{X}=\mathbf{0 . 3 3 5} \mathrm{M}$
Q. 43 (1)
$\mathrm{E}_{\text {cell }}=\mathrm{E}^{\mathrm{o}}-\frac{0.0591}{\mathrm{n}} \log \mathrm{Q}_{\mathrm{eq}}$.
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \quad \mathrm{E}^{\mathrm{o}}=0$
$\mathrm{Q}_{\text {eq. }}=\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left(\mathrm{H}^{+}\right)^{2}}, \mathrm{E}_{\text {cell }} \frac{-0.0591}{2} \log 100=-0.0591$
$\Delta \mathrm{E}_{\text {cell }}=0.0591$
Q. 44 (1)
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}=\frac{0.0591}{2} \log \frac{\mathrm{Sr}^{2+}}{\mathrm{Mg}^{2+}}=\frac{0.0591}{2} \log (2.69 \times$ $\left.10^{+12}\right)=0.3667$
Q. 51 (2)

$$
\begin{array}{ll}
\text { Q. } 45 & \begin{array}{l}
\text { (2) } \\
\\
\\
\mathrm{Ag}
\end{array} \mathrm{Ag}^{+}+\mathrm{e}^{-}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{E}^{\mathrm{o}}=-0.799 & \mathrm{E}_{\text {cell }}=-0.25 \\
\mathrm{E}_{\text {cell }}=-0.25 & \mathrm{E}_{\text {cell }}=-0.799
\end{array}
$$

$$
\Rightarrow \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.0591}{1} \log \left(\mathrm{Ag}^{+}\right)
$$

$$
-0.25+0.799=-0.0591 \log \left(\mathrm{Ag}^{+}\right)
$$

$$
\log \left(\mathrm{Ag}^{+}\right)=\frac{-0.799+0.25}{0.0591}
$$

$$
\left(\mathrm{Ag}^{+}\right)=5.13 \times 10^{-10}
$$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{sp}} & =\left(\mathrm{Ag}^{+}\right)\left(\mathrm{Cl}^{-}\right)=5.13 \times 10^{-10} \times 0.1 \\
& =5.13 \times 10^{-11}
\end{aligned}
$$

Q. 46 (1)
Q. 47 (2)

Anode
$\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
Cathode
$2 \mathrm{e}^{-}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}^{-}$
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}$
$\left[\left(\mathrm{H}^{+}\right)^{2}\left(\mathrm{Cl}^{-}\right)^{2}\right]=\mathrm{K}_{\text {eq. }}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}^{\mathrm{o}}-\frac{0.0591}{2} \log \left(\mathrm{H}^{+}\right)^{2}\left(\mathrm{Cl}^{-}\right)^{2}$
$=\mathrm{E}^{\mathrm{o}}-0.0591 \log \left[\mathrm{H}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
Q. 48 (3)

$E_{\text {cell }}=-\frac{0.0591}{2} \log \left(\frac{(0.1)^{2}(0.1)}{(0.01)^{2}(0.4)}\right)=-0.041$

Q. 49 (3)

In this Cl^{-}will oxidise to give $\mathrm{Cl}_{2}, \mathrm{Na}^{+}$reduction potential has lower potential than water reduction polenlid so water will reduce to give H_{2}.
(C) NaCl
Q. 50 (1)

As electron flows from anode to a cathode and so current flows from cathode to anode in outer drcuit

Water oxidation at anode can be represented and $\mathrm{SO}_{4}{ }^{2-}$ can't be discharged
so
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$
so ion which will be discharged at anode will be OH^{-}
Q. 52 (3)

At cathode
$4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{H}_{2}+4 \mathrm{OH}^{-}$
At anode
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$
Thus at cathode we will get H_{2} whereas at anode we will get O_{2}.

Q. 53 (1)

In electrolysis of a fused salt, the weight deposited on electrode will not depend or temperature.
Q. 54 (3)

In this Cl^{-}will oxidise to give $\mathrm{Cl}_{2} \mathrm{Na}^{+}$water reduction potential has higher potential than that of water reduction potential, so water will reduce to give H_{2}.
Q. 55 (2)

Cation loses charge at cathode as it gave electron.
Q. 56 (2)

As reduction will take place at cathode so reaction $\mathrm{Cu}^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}$ Will take place at cathode
Q. 57 (2)

If mercury is used as cathode in the electrolysis of aqueos NaCl solution then the metal is discharged at mercury to from amalgam.
Q. 58 (2)

Volume : $10 \times 10 \times 10^{-2}=1 \mathrm{~cm}^{3}$
mass of $\mathrm{Cu}=8.94 \mathrm{~g}$
mole of $\mathrm{Cu}=\frac{8.94}{63.5}$
EQuivalent of $\mathrm{Cu}=\frac{8.94}{63.5} \times 2$
Charge $=\frac{8.94}{63.5} \times 2 \times 96500 \mathrm{C}=27172 \mathrm{C}$
Q. 59 (4)

Equivalent of $\mathrm{H}_{2}=$ Equivalent of O_{2}
$=\frac{2.4}{22.4} \times 4 \quad \Rightarrow$ Mole of $\mathrm{H}_{2}=\frac{2.4}{22.4} \times 4 \times \frac{1}{2}$

Volume of $\mathrm{H}_{2}=\frac{2.4 \times 2}{22.4} \times 22.4$
$=4.8 \mathrm{~L}$

Q. 60 (4)

At both electrodes oxidation of $\mathrm{Cu} \&$ reduction of Cu takes place
Anode $\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}$
Cathode $\mathrm{Cu}^{2+} \longrightarrow \mathrm{Cu}$
So If 2.5 g deposited at cathode $\Rightarrow 2.5$ of Cu mass decreased from anode

Q. 61 (1)

Cathode
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+20 \mathrm{H}^{-}$
Anode
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$

Q. 62 (1)

LiCl
(According to S.R.P.)
Cathode
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
Anode $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
At cathode $\left(\mathrm{OH}^{-}\right) \uparrow \mathrm{pH} \downarrow$ and $\mathrm{pH} \uparrow$
Q. 63 (3)

At anode $: \mathrm{Ag} \longrightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-}$
At cathode : $\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}$
So conc. of Ag^{+}will remain same .

Q. 64 (4)

(1) Anode $2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
(2) Anode $2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
(3) Anode $\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
(4) Anode $2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$

Q. 65 (3)

$$
\frac{1.81 \times 10^{22}}{6.02 \times 10^{23}}=\frac{1}{\text { At. mass }} \times 2
$$

rxn. $\mathrm{Mn}^{2+} \longrightarrow \mathrm{Mn}$

$$
\mathrm{nf}=2
$$

At mass $=\frac{2 \times 6.022 \times 10^{23}}{1.81 \times 10^{22}}=66.7$
Q. 66 (4)
 (1 mole)
5 mole $\mathrm{e}^{-}=5$ Faraday.
Q. 67 (2)

Mole of Fe deposited $=\frac{1}{2} \times 3=1.5$ mole
$\mathrm{W}_{\mathrm{Fe}}=1.5 \times 56=\mathbf{8 4} \mathbf{~ g m}$.
Q. 78 (3)
$\mathrm{W}=\frac{63.5}{2 \times 96500} \times 2 \times 60 \times 60=2.37 \mathrm{gm}$
$\%$ of efficiency $=\frac{3}{2.37} \times 100$.

Q69 (2)
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
No. of Faraday passed $=\frac{9.65 \times 1000}{96500}=0.1 \mathrm{~F}$
$\mathrm{n}_{\mathrm{OH}^{-}}$formed $=0.1 \mathrm{~mol}$
$\mathrm{nNaOH}=0.1 \mathrm{~mol} \equiv \mathbf{4} \mathbf{~ g m}$.
Q. 70 (1)

Since to deposit 1 mole of aluminium 3 columb of electricity is required, as the alency of silver is +1 so 3 mole of silver will be deposited by 3C of electricity
Q. 71 (2)
gm eq. of $\mathrm{H}_{2}=$ gm eq. of Cu
$\frac{0.504}{2} \times 2=\frac{w}{63.5} \times 2$
$\mathrm{W}=\frac{63.5 \times 0.50 \mathrm{R}}{2}=16.0 \mathrm{gm}$
Q. 72 (3)

No. of $\mathrm{F}=\frac{\text { it }}{96500}=$ gm eq of Cu
moles of $\mathrm{Cu}=\frac{\text { gmeq. of } \mathrm{Cu}}{2}$
moles of $\mathrm{Cu}=\frac{2.6 \times 380}{96500 \times 2}$
wt. of $\mathrm{Cu}=\frac{2.6 \times 380}{96500 \times 2} \times 63.5$
$=0.325 \mathrm{gm}$
Q. 73 (2)
gm equivalent of $\mathrm{Al}=$ gm eq. of $\mathrm{Cu}=\mathrm{gm}$ eq. of Na
$3=3=3$
$3 / 3 /=3 / 2=1$
$1: 1.5: 3$
Q. 74 (3)
gm equivalent $=\frac{8}{96500}$
$0.01=\frac{8}{96500}=965 \mathrm{C}$
Q. 75 (2)

Z $=$ w/it
w in gm
it in columb.
so $\mathrm{Z}=\mathrm{gm} /$ columb
Q. 76 (4)

Since KCl has the n-factor of 1 so 1 faraday of electricity will liberate one mole of metal from a solution.
Q. 77 (2)

Since magnesium has the n-factor 2 so the number of faraday rquired to genereate 1 mole of Mg will be 2 .
Q. 78 (3)
equivalence of $\mathrm{H}_{2}=$ equivalence of O_{2}
$\frac{0.224}{22.4} \times 2=\frac{\text { volume of } \mathrm{O}_{2}}{22.4} \times 4$
0.112 litre $=$ volume of O_{2}.
Q. 79 (3)
$\mathrm{Na}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Na}(\mathrm{s})$
1mole 1 Faraday
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(\mathrm{s})$
1 Faraday
No. of mole of $\mathrm{Al}=\frac{1}{3}$ mole.
Q. 80 (2)

Discharging reaction
$\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$.
Q. 81 (1)
$\mathrm{H}_{2}-\mathrm{O}_{2}$ fuel cell
At anode : $2 \mathrm{OH}^{-}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
At cathode $: 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}$
Q. 82 (2)
$\mathrm{K}=0.3568 \Omega \mathrm{~cm}^{-1}$
condutance $=0.0268 \Omega^{-1}$
$\mathrm{K}=\mathrm{G} \times 1 / \mathrm{A}$
$0.3568=0.0268 \times 1 / 9$
$13.31 \mathrm{~cm}^{-1}$
Q. 83 (2)
$\mathrm{K}=\mathrm{G}$. L / A
$10^{-3} \times 2.768=1 / \mathrm{R} \times \mathrm{L} / \mathrm{A}$
$\mathrm{L} / \mathrm{A}=228.08 \times 10^{-3}$
$=0.2281 \mathrm{~cm}^{-1}$
Q. 84 (3)

Higher the dilution higher will be the equivalent conductance
Q. 85 (3)
$K=G \frac{L}{A}$
$K=\frac{1}{R} \times \frac{L}{A}$
$\frac{1}{100} \times 1, K=10^{-2} \Omega^{-1} \mathrm{~cm}^{-1}$
Q. 86 (4)
$\lambda_{\mathrm{m}}=\frac{\mathrm{K} \times 1000}{\mathrm{M}}$
$\lambda_{\mathrm{m}}=\frac{0.0110 \times 1000}{0.05}$
$=220 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
Q. 87 (2)

That electrolyte will be the best electrolyte which has maximum number of ions.
Q. 88 (3)
$\alpha=\frac{10}{200}=\frac{1}{20}$
$\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=0.1 \times \frac{1}{20}=\frac{1}{200}$
$\mathrm{pH}=-\log \frac{1}{200}=\log 200=2.3$
Q. 89 (3)
$K=\frac{1}{X}$
$\wedge=k \frac{1000}{M}=\frac{1}{\lambda} \times \frac{1000}{y}=\frac{1000}{x y}$
Q. $90 \quad$ (2)
$380 \times 10^{-4} \times 10^{4} \frac{\mathrm{Scm}^{2}}{\mathrm{~mole}}=\mathrm{k} \times \frac{1000}{\mathrm{M}}$
\downarrow

Molarity of ion
$1.6 \times 10^{-5}=\frac{x^{2}}{0.01-x} \Rightarrow 16 \times 10^{-8}$

$$
16 \times 10^{-8}=x^{2}
$$

$x=4 \times 10^{-4}$
$\mathrm{K}=\frac{380 \times \mathrm{M}}{1000}=\frac{380 \times 4 \times 10^{-4}}{1000}$
$=152 \times 10^{-6} \mathrm{Scm}^{-1}$
$=1.52 \times 10^{-2} \mathrm{Sm}^{-1}$

Q. 91 (3)

$\mathrm{Ka}=25 \times 10^{-6} \wedge_{\text {eq }}=19.6 \mathrm{Scm}^{2} \mathrm{eq}^{-1}, \mathrm{C}=0.01$
$\mathrm{Ka}=0.01 \times \alpha^{2} \quad \Rightarrow \alpha=\sqrt{\frac{25 \times 10^{-6}}{10^{-2}}}=5$
$\times 10^{-2}$
$\alpha=5 \times 10^{-2}=\frac{19.6}{\Lambda_{\text {eq }}^{\circ}} \quad \Rightarrow \wedge_{\text {eq }}^{\circ}=\frac{19.6}{5 \times 10^{-2}}=$
$392 \mathrm{Scm}^{2} \mathrm{eq}^{-1}$.
Q. 92 (4)

Molar conductivity α no. of ions per mole of electrolyte.
Q. 93 (4)

$$
\wedge_{\mathrm{m}_{\mathrm{maSO}}^{4}}=\left(\mathrm{x}_{1}+\mathrm{x}_{2} \mathrm{x}-2 \mathrm{x}_{3}\right) \quad \Rightarrow \quad \wedge_{\mathrm{eqq}_{3}, \mathrm{BaSO}_{4}} \quad=
$$

$\wedge_{\text {eq. }, \mathrm{BaSO}_{4}}$
n - factor
$\wedge_{\text {eq, }^{\text {BaSO }}}^{4}$ $=\frac{\left(\mathrm{x}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}\right)}{2}$
Q. 94 (1)

$$
\begin{aligned}
& 1.5 \times 10^{-4} \times 10^{4}=9 \times 10^{-8} \times \frac{1000}{\mathrm{~N}} \\
& \Rightarrow \mathrm{~N}=6 \times 10^{-5} \\
& \Rightarrow \mathrm{M}=\frac{6 \times 10^{-5}}{3}=2 \times 10^{-5}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=(3 \mathrm{~S})^{2}(\mathrm{~S})=27 \mathrm{~S}^{4}=27 \times 16 \times 10^{-20} \\
& =432 \times 10^{-20}=4.32 \times 10^{-18}
\end{aligned}
$$

Q. 95 (4)

$$
1.53=\frac{1000 \times 3.06 \times 10^{-6}}{\text { Normality }}
$$

Normality $=2 \times 10^{-3} \mathrm{M}$
Molarity $=\frac{2 \times 10^{-3}}{2}=10^{-3} \mathrm{M}$
$\mathrm{K}_{\mathrm{sp}}=10^{-6} \mathrm{M}$
Q. 96 (4)

$$
\mathrm{Ka}=\mathrm{Ca}^{2}=0.1 \times\left(\frac{7}{380.8}\right)^{2}=\mathbf{3 . 3 8} \times \mathbf{1 0}^{-5}
$$

Q. 97 (3)
$\mathrm{K}=1.382 \times 10^{-6} \mathrm{scm}^{-1}$
$\Lambda_{\mathrm{AgCl}}=61.9+76.3=138.2=\frac{1000 \times 1.382 \times 10^{-6}}{\mathrm{~S}}$
$\mathrm{S}=10^{-5} \mathrm{M}$.
Q. 98 (3)

$$
\begin{aligned}
& \mathrm{AgA} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{A}^{-} ; 3 \times 10^{-14} \\
& \mathrm{AgB} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{B}^{-} ; 1 \times 10^{-14} \mathrm{~S}_{1}+\mathrm{S}_{2} \mathrm{~S}_{1} \\
& \mathrm{~S}_{1}+\mathrm{S}_{2} \mathrm{~S}_{2} \\
& \mathrm{~S}_{1}+\mathrm{S}_{2}=2 \times 10^{-7} ; \mathrm{S}_{1}=1.5 \times 10^{-7} \\
& \mathrm{~S}_{2}=0.5 \times 10^{-7} \\
& 375 \times 10^{-10}=\mathrm{K}_{\mathrm{Ag}^{+}}+\mathrm{K}_{\mathrm{A}^{-}}+\mathrm{K}_{\mathrm{B}^{-}} \\
& =\frac{\left(\Lambda_{\mathrm{Ag}^{+}}\right)\left(\mathrm{M}_{\mathrm{Ag}^{+}}\right)}{1000}+\frac{\left(\Lambda_{\mathrm{A}^{-}}\right)\left(\mathrm{M}_{\mathrm{A}^{-}}\right)}{1000}+\frac{\left(\Lambda_{\mathrm{B}^{-}}\right)\left(\mathrm{M}_{\mathrm{B}^{-}}\right)}{1000}
\end{aligned}
$$

$$
=60\left(\mathrm{~S}_{1}+\mathrm{S}_{2}\right)+80 \mathrm{~S}_{1}+\Lambda_{\mathrm{B}}-\mathrm{S}_{2}
$$

After putting value of $\mathrm{S}_{1} \& \mathrm{~S}_{2}$

$$
\Lambda_{\mathrm{B}^{-}}=270
$$

Q. 99 (3)
$\mathrm{C}=\frac{1}{50} ; \frac{\ell}{\mathrm{a}}=\frac{2.2}{4.4}=\frac{1}{2}$
$\mathrm{K}=\frac{\mathrm{C} \ell}{\mathrm{a}}=\frac{1}{50} \times \frac{1}{2}=10^{-2}$
$\lambda_{\mathrm{m}}=\mathrm{k} \times \frac{1000}{\mathrm{M}}$
$=10^{-2} \times \frac{1000}{0.5}=20 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$=20 \times 10^{-4} \mathrm{Sm}^{2} / \mathrm{mol}$

$$
=0.002 \mathrm{Sm}^{2} / \mathrm{mol}^{-1}
$$

Q. 100 (1)

For strong electrolyte

$$
\lambda_{M}^{c}=\lambda_{M}^{\infty}-b \sqrt{C}
$$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)
$E_{\text {cell }}=(0.77-0.0713)-\frac{0.059}{1} \log \frac{0.02}{0.1 \times 0.34}=0.713$
volt.
Q. 2 (B)
$\mathrm{E}_{\text {cell }}=0.059 \log \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$

For $\mathrm{E}_{\text {cell }}$ to be +ve and maximum
$\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}<1$ or $\mathrm{C}_{1}<\mathrm{C}_{2} \quad$ Give $\mathrm{C}_{2}=1 \mathrm{M}$.
$\therefore \mathrm{C}_{1}$ should be the minimum conc. of H^{+}.
\therefore (B) is the right answer.
Q. 3 (B)
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}=0.8-(-0.76)=\mathbf{1 . 5 6} \mathbf{~ V}$
Q. $4 \quad$ (A)
$\mathrm{E}_{\text {cell }}=0.77-\frac{0.059}{1} \log \frac{1.5}{0.015}=\mathbf{0 . 6 5 2} \mathbf{V}$
Q. $5 \quad$ (A)

$$
\mathrm{AsE}_{\mathrm{Cu}^{2+}}^{\mathrm{o}} \longrightarrow \mathrm{Cu}=0.337 \mathrm{~V}>\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}}^{0}
$$

$\therefore \mathrm{Cu}^{2+}$ can be reduced by H_{2}.
Q. 6 (C)
M is more reactive than carbon and B is more reaitive than A. Also both B and A are less reactive than C.
Q. 7 (B)

Higher the std. reduction potential, higher is the oxidising power.
Q. $8 \quad$ (A)
$\mathrm{Z}>\mathrm{Y}>\mathrm{X}\left(\right.$ Non metals like $\left.\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}\right)$ So, Y will oxidise X^{-}but not Z^{-}

Z will oxidise both X^{-}and Y^{-}
X can't oxidise Y^{-}or Z^{-}.
Q. 9 (C)

Lower standard reduction potential related metal ions can displace higher standard reduction potential related metal ions.
Q. 10 (A)
$\mathrm{E}^{\mathrm{o}} \mathrm{MnO}_{4}^{-} / \mathrm{MnO}_{2}=\frac{5 \times 1.5-2 \times 1.23}{3}=1.7$ volt
Q. 11 (A)
$\Delta \mathrm{S}=\frac{\mathrm{nFdE}_{\text {cell }}}{\mathrm{dt}}$ or $\frac{\mathrm{dE}_{\text {cell }}}{\mathrm{dt}}=\frac{\Delta \mathrm{S}}{\mathrm{nF}}$
Q. 12 (B)
$\mathrm{E}_{\text {cell }}=0.29-\frac{0.059}{2} \log \frac{0.01 \times(0.01)^{2}}{(0.01)^{2} \times 1}$ or $\mathrm{E}_{\text {cell }}=$

0.35 volt

Q. 13 (B)
$\mathrm{E}_{1}=\mathrm{E}^{\mathrm{o}}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln 2$
$\mathrm{E}_{2}=\mathrm{E}^{\mathrm{o}}-\frac{\mathrm{R} \times 2 \mathrm{~T}}{\mathrm{nF}} \ln 1=\mathrm{E}^{\mathrm{o}}$
$\therefore \mathrm{E}_{2}>\mathrm{E}_{1}$
Q. 14 (B)
$\mathrm{E}_{\text {cell }}=\frac{0-0.059}{1} \log \sqrt{\frac{10^{-5}}{10^{-3}}}=\mathbf{0 . 0 5 9} \mathbf{V}$
Q. 15 (C)
$-0.413=0-0.059 \log \frac{1}{\left[\mathrm{H}^{+}\right]}$or $\frac{0.414}{0.059}=-\log \mathrm{H}^{+}=$ pH or $\mathrm{pH}=7$
Q. 16 (B)
$1.1591=1.1-\frac{0.059}{2} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}$ or $\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}=10^{-2}=$
0.01
Q. 17 (A)
$\mathrm{Ag} \longrightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-}$
$\mathrm{E}_{1}=\mathrm{E}_{\text {oxid }}+\mathrm{E}_{\text {calomel }}$
$=\mathrm{E}^{\prime}-\frac{0.0591}{1} \log \mathrm{~K}_{\mathrm{sp}_{1}}+\mathrm{E}_{\text {calomel }}$
$\mathrm{E}_{2}=\mathrm{E}^{\prime}-\frac{0.0591}{1} \log \mathrm{~K}_{\mathrm{Sp}_{2}}+\mathrm{E}_{\text {calomel }}$
$\mathrm{E}_{2}-\mathrm{E}_{1}=0.177=0.0591 \log \frac{\mathrm{~K}_{\mathrm{sp}_{1}}}{\mathrm{~K}_{\mathrm{sp}_{2}}}$
$\frac{\mathrm{K}_{\mathrm{sp}_{1}}}{\mathrm{~K}_{\mathrm{sp}_{2}}}=\mathbf{1 0}^{\mathbf{3}}$
Q. 18 (C)

Only anode or cathode can't work alone so absolute value of reduction potential can't be determined.
Q. 19 (C)
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.059}{2} \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \mathrm{Ag}^{+}$increase, $\mathrm{E}_{\text {cell }}$ increase.
Q. 20 (B)

$$
\mathrm{AgCl}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}+\mathrm{Cl}^{-}
$$

$\mathrm{E}^{\circ}=0.2 \mathrm{~V}$

$$
\mathrm{Ag} \longrightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-}
$$

$\mathrm{E}^{\circ}=-0.79 \mathrm{~V}$
$\mathrm{AgCl} \xrightarrow{\mathrm{e}^{-}} \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \quad \mathrm{E}^{\circ}=-0.59 \mathrm{~V}$
$\mathrm{E}^{\circ}=\frac{0.059}{\mathrm{n}} \log \mathrm{K} \Rightarrow-0.59=\frac{0.059}{1} \log \mathrm{~K}_{\mathrm{SP}}$
$\Rightarrow \mathrm{K}_{\mathrm{SP}}=10^{-10}$
Now solubility of AgCl in $0.1 \mathrm{M} \mathrm{AgNO}_{3}$

$$
S(S+0.1)=10^{-10} \quad \Rightarrow S=10^{-9} \mathrm{~mol} / \mathrm{L}
$$

Hence 1 mole dissolves in $10^{9} \mathrm{~L}$ solution hence in $10^{6} \mathrm{~L}$ amount that dissolves in 1 m mol .
Q. 21 (B)

$$
\frac{1000 \times 2}{(55+32)}=\frac{27 \times 24 \times 3600 \times \eta}{96500} \text { or } \eta=0.951=\mathbf{9 5 . 1 \%}
$$

Q. 22 (B)

$$
\frac{9.72}{22.4} \times 2=\frac{2.35}{22.4} \times 4+\frac{\mathrm{W}}{194} \times 2 \text { or } \mathrm{W}=43.47 \mathrm{~g}
$$

Q. 23 (D)

Impure Cu will oxidise from anode along with Zn but only Cu^{2+} will reduce on cathode in purification of Cu^{2+}.
Q. 24 (D)
AgNO_{3} At cathod:

$$
\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{~s})
$$

At anode :
$2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
\therefore At cathode pH will increase.
Q. 26 (C)

At Cathode : $\left.2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}\right] \times 2$
At Anode : $2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
$\mathrm{H}_{2}=2$ mole
$\mathrm{O}_{2}=1$ mole
Total volume $=3 \times 22.4=67.2 \mathrm{~L}$.
Q. 27 (A)
$\mathrm{Q}=10 \times 4825=48250 \mathrm{C}$
no. of faraday $=\frac{48250}{96500}=0.5$
$\begin{array}{rl}\mathrm{Ag}+\frac{1}{2} \mathrm{Cu}^{++} \longrightarrow \mathrm{Ag}^{+} & +\frac{1}{2} \mathrm{Cu} \\ 2.00 & 2.00 \\ 2-0.25 & 2+0.50\end{array}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\mathrm{Cell}}^{\mathrm{o}}-\frac{0.0591}{1} \log \frac{\left[\mathrm{Ag}^{+}\right]}{\left[\mathrm{Cu}^{++}\right]^{1 / 2}}$
$\mathrm{E}_{1}=\mathrm{E}_{\text {Cell }}^{\mathrm{o}}-\frac{0.0591}{1} \log \frac{2.00}{(2.00)^{1 / 2}}$
$\mathrm{E}_{2}=\mathrm{E}_{\text {Cell }}^{\mathrm{o}}-\frac{0.0591}{1} \log \frac{2.50}{(1.75)^{1 / 2}}$
$\Delta \mathrm{E}=\mathrm{E}_{2}-\mathrm{E}_{1}=\frac{0.0591}{1}\left[\log \sqrt{2}-\log \frac{2.50}{\sqrt{1.75}}\right]=$
$\frac{0.0591}{1}[\log 1.41-\log 1.88]$
$=\frac{0.0591}{1}[0.1492-0.2742]$
$=-\frac{0.0591}{1} \times 0.125=-0.00738 \mathrm{~V}$.
Q. 28 (A)

$\mathrm{Q}=\frac{\pi(25)}{4} \mathrm{C}=\frac{\pi \times 25}{4 \times 96500} \mathrm{~F}$
$\therefore \mathrm{m}=\frac{108}{1} \times \frac{\pi \times 25}{4 \times 96500} \mathrm{~g}=0.02197 \mathrm{~g}$
$=21.97 \mathrm{mg} \simeq 22 \mathrm{mg}$
Q. 29 (B)

Rusting reaction of Fe is -
$2 \mathrm{H}^{+}+\mathrm{Fe}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}$
Q. 30 (A)

$$
\frac{i \times 15 \times 60}{96500}=\frac{6.72}{22.4} \times 2 \quad \Rightarrow i=64.3 \mathrm{amp}
$$

Q. 31 (A)

$$
\begin{aligned}
& \frac{\lambda_{\mathrm{Cl}}^{0}}{\lambda_{\mathrm{k}^{+}}^{o}+\lambda_{\mathrm{C}\ulcorner }^{o}}=0.505 \text { or } \lambda_{\mathrm{Cl}^{-}}^{\mathrm{o}}=0.505 \times 130 \\
& \quad=65.65 \mathrm{Scm}^{2} \mathrm{eq}^{-1} . \\
& \begin{aligned}
\lambda_{\mathrm{k}^{+}}^{\mathrm{o}} & =\mathrm{F} \times \mathrm{U}_{\mathrm{K}^{+}} \text {or } \\
\mathrm{U}_{\mathrm{K}^{+}}=\frac{(130-65.65)}{96500} & \mathrm{~cm}^{2} \mathrm{volt}^{-1} \mathrm{sec}^{-1} . \\
& =\mathbf{6 . 6 7} \times \mathbf{1 0}^{-4} \mathbf{~ c m}^{2} \mathbf{v o l t}^{-\mathbf{1}} \mathbf{~ s e c}^{-1} .
\end{aligned}
\end{aligned}
$$

Q. 32 (A)
$\mathrm{H}^{+}+\mathrm{CI}^{-}+\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{CI}^{-}+\mathrm{H}_{2} \mathrm{O}$ to conductance $\mathrm{I}^{\text {st }}$ decreases since no. of ions decreases after end point it inceases.
Q. 33 (B)
$\mathrm{H}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
$0.015 \mathrm{~V} \quad 0.015 \mathrm{~V} \quad 0.015 \mathrm{~V}$
mole mole mole
molarity $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)=\frac{0.015 \mathrm{~V}}{2 \mathrm{~V}}=\frac{0.015}{2}$

$$
\Lambda_{\mathrm{m}}^{\circ}=6.3 \times 10^{-4} \times \frac{1000}{\left(\frac{0.015}{2}\right)}=\frac{6.3 \times 2}{0.15}=84
$$

JEE-ADVANCED
 MCQ/COMPREHENSION/MATCHING

Q. 1 (ABC)

Reduction Potential of Ce is higher than that of Zn .
Q. 2 (BC)
(a) $\mathrm{SOP}\left(\mathrm{SO}_{4}{ }^{2-}\right)=-2.00$
$\mathrm{SOP}\left(\mathrm{Cl}^{-}\right)=-1.36$
oxidation of $\mathrm{SO}_{4}{ }^{2-}$ will not take place
(b) $\mathrm{SOP}\left(\mathrm{Cl}^{-}\right)=-13.6$
$\operatorname{SOP}\left(\mathrm{I}^{-}\right)=-0.54$

SOP $\left(\mathrm{Br}^{-}\right)=-1.09$
(c) Similarly as (b) option
(d) Br^{-}can't be reduced further.
Q. 3 (AD)

Cell reaction
Anode
$\mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-1} \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-}$
Cathode
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
$2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{Cl}^{-}+2 \mathrm{H}^{+} \rightleftharpoons 2 \mathrm{AgCl}(\mathrm{s})+\mathrm{H}_{2}$
$\mathrm{E}=\mathrm{E}^{\mathrm{o}}-\frac{0.0591}{2} \log \left\{\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left[\mathrm{Cl}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{2}}\right\}$
$0.22=\mathrm{E}^{\mathrm{o}}-\frac{0.0591}{2} \log \left[\frac{1}{1 \times 1}\right]$
$\Rightarrow \mathrm{E}^{\mathrm{o}}=0.22 \mathrm{~V}$
$\mathrm{E}_{\text {cell }}=0.22-\frac{0.0591}{2} \log \left\{\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{Cl}^{-}\right]^{2}}\right\}$
(a) $\mathrm{P}_{\mathrm{H}_{2}}=2 \Rightarrow \mathrm{E}_{\text {cell }}<0.22$
(b) $\left[\mathrm{Cl}^{-}\right] \uparrow \Rightarrow \log \left\{\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{Cl}^{-}\right]^{2}}\right\}=-$ ve value
$\Rightarrow \mathrm{E}_{\text {cell }}>0.22$
(c) $\left[\mathrm{H}^{+}\right] \uparrow \Rightarrow \mathrm{E}_{\text {cell }}>0.22$
(d) KCl conc ${ }^{\text {n }} \downarrow^{-} \Rightarrow\left[\mathrm{Cl}^{-}\right] \downarrow$
$\Rightarrow \log \left\{\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{Cl}^{-}\right]^{2}}\right\}>0 \Rightarrow \mathrm{E}_{\text {cell }}<0.22$
Q. 4 (AB)

At Cathode :

$$
\begin{aligned}
& \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{~s}) \\
& 2 \mathrm{Br}^{-}+\longrightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-} \\
& -\mathrm{Br}_{2}+\mathrm{Cu}(\mathrm{~s})
\end{aligned}
$$

Q. 5 (AB)

At Cathode :
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$
At Anode
$\mathrm{Cu}(\mathrm{s}) \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
Increase in mass of cathode $=$ decrease in mass of
Anode $=\frac{2.68 \times 3600}{96500} \times \frac{63.5}{2}=\mathbf{3 . 1 7 4} \mathbf{g}$.
Q. 6 (ACD) because $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}>\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\mathrm{o}}$.
Q. 7 (AB)

Cell reaction
$2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
$270 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\frac{270}{18}$ mole $=15$ mole equivalent $=15 \times 2=30$ equivalent
(a) O_{2} evolved $=\frac{15}{2}=7.5$ mole $=7.5 \times 22.4 \mathrm{~L}$ $=168 \mathrm{~L}$
(b) Total mole of gas $=15 \times \frac{3}{2}=\frac{45}{2}$

Total volume of gas produced
$=22.4 \times \frac{45}{2}=504 \mathrm{~L}$
(c) H_{2} produced $=30 \times 22.4=336 \mathrm{~L}$ at cathode current efficilency $=75 \%$
(d) for 30 Felectricity consumed
will be $=30 \times \frac{100}{75}=40 \mathrm{~F}$
Q. 8 (BCD)
(A) At anode oxidation of Cu produce Cu^{2+}
(B) At both electrode oxidation or reduction of hydrogen or H^{+}
(C) At anode
$4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$
(D) Anode

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{-}
$$

Q. 9 (BCD)
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}\left[\right.$ in $\left.\mathrm{FeSO}_{4}\right] ; \mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}[$ in $\left.\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right]$
$\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}\left[\right.$ in $\left.\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right]$
Amount of Fe deposited in $\mathrm{FeSO}_{4}=\frac{\mathrm{Q}}{96500} \times \frac{56}{2}$
Amount of Fe deposited in $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=\frac{\mathrm{Q}}{96500} \times \frac{56}{3}$
Q. 10 (CD)
$\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{1}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$: consumed
$\mathrm{H}_{2} \mathrm{O}$: produced (volume increases and density decreases)
Anode
$\mathrm{Pb}(\mathrm{S})+\mathrm{SO}_{4}{ }^{2+} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{e}^{-}$
Cathode
$2 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{PbO}_{2}+\mathrm{So}_{4}^{2-} \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$

Q. 11 (ACD)

Resistance of cell is not due to vibrations of ion but actually it is due to collisons of ions.

Q. 12 (ACD)

On dilution specific conductance decreases while molar conductivity increases.

Comprehension \# 1 (Q. No. 13 to 17)

Q. 13 (A)
Q. 14 (C)
Q. 15 (A)
Q. 16 (A)
Q. 17 (B)
$13 \Delta \mathrm{~W}=-\mathrm{nFE}$
$82700=-3 \times 96500$
$14 \quad \mathrm{E}=\varepsilon^{\circ}-\frac{0.591}{\mathrm{n}} \log \mathrm{Q}$.
ef $\mathrm{KC}=\mathrm{Q}$
E=O
Ans. (C)
$15 \varepsilon=\varepsilon^{\circ}-\frac{0.591}{\mathrm{n}} \log \mathrm{Q}$.
(A) i.e. straight line
$\varepsilon^{\circ}=\frac{0.591}{\mathrm{n}} \log \mathrm{Ve}$.
here $\mathrm{n}=2$
$0.46 \frac{0.591}{\mathrm{n}} \log \mathrm{Ke}$
$\varepsilon^{\circ}=\frac{0.591}{2} \log \mathrm{Ve}$
$1.10=\frac{0.591}{2} \log \mathrm{Ke}$

Comprehension \# 2 (Q. No. 18 to 19)
Q. 18 (B)
Q. 19 (C)
$\left.3 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}\right] \times 2$
$\left.\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}\right] \times 3$
$8 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-}+3 \mathrm{Cu} \rightarrow 2 \mathrm{NO}+3 \mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{E}_{\text {cell }}^{\mathrm{o}}=0.96-0.34=0.62
$$

$$
\mathrm{E}_{\text {cell }}=0.62-\frac{0.06}{6} \log \frac{\left(\mathrm{P}_{\mathrm{No}}\right)^{2}\left(\mathrm{Cu}^{2+}\right)^{3}}{\left(\mathrm{NO}_{3}^{-}\right)^{2}\left(\mathrm{H}^{+}\right)^{8}}
$$

$$
=0.62-0.01 \log \frac{10^{-6} \times 10^{-3}}{(1)^{2}(1)^{8}}
$$

$$
=0.62+0.01 \times 9=0.62+0.09=0.71 \mathrm{~V}
$$

Comprehension \# 3 (Q. No. 20 to 22)

Q. 20 (B)
Q. 21 (A)
Q. 22 (A)
$20 \quad \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{0}-\frac{2.303 \mathrm{RT}}{\mathrm{nF}} \log \frac{\left(\mathrm{Zn}^{+2}\right)}{\left(\mathrm{Cu}^{+2}\right)}$

$$
=0.76+0.34-\frac{2.303 \times 8.31 \times 200}{2 \times 96500} \log \frac{2}{0.2}=1.08 \text { volt. }
$$

Q. 25 (B)
Q. 26 (D)
Q. 27 (A)

23 From given latimer diagrams. $\mathrm{Cl}_{2}-\mathrm{Cl}^{-}$is independent of H^{+}cocentration.
$24 \Delta \mathrm{G}^{0}=\Delta \mathrm{G}_{1}{ }^{0}+\Delta \mathrm{G}_{2}{ }^{0}$, using this $\mathrm{E}^{0}=\frac{0.42+1.36}{2} \mathrm{~V}=$ 0.89 V

26 As $\frac{\Delta \mathrm{G}^{0}}{\mathrm{~F}}$ is low, stability is higher.
27 As $\frac{\Delta G^{\circ}}{F}$ is low, stability is higher so, +2 and 0 state is more stable than +1 .

Comprehension \# 5 (Q. No. 28 to 32)

Q. 28 (B)
Q. 29 (D)
Q. 30 (C)
Q. 31 (A)
Q. 32 (A)

28
560 mL of H_{2} gas $=\frac{560}{22400}$ moles of H_{2} gas $=\frac{1}{4} \times 10^{-1}$ moles of H_{2} gas $=\frac{1}{2} \times 10^{-1}$ moles of electrons

$$
=\frac{1}{2} \times 10^{-1} \times 96500 \mathrm{C} \text { of electrical charge }=4825 \mathrm{C}
$$

So, electrical current $=\frac{4825}{600}=8.04 \mathrm{~A}$
$29 \Delta \mathrm{G}^{0}=-\mathrm{nFE}^{0}{ }_{\text {cell }}=-2 \times 96500 \times 1.2288 \mathrm{~J} / \mathrm{mole}$ $=-237.1584 \mathrm{~kJ} / \mathrm{mole}$

So, thermodynamic efficiency $=\frac{237.1584}{285}=0.83$.
as per passage
Q. 34 (C)
Q. 35 (A)

33

Comprehension \# 6 (Q. No. 33 to 35)

(B)

$200=\mathrm{k} \times \frac{1000}{0.02}$ for KCl
$\mathrm{k}=4 \times 10^{-3}$
for $\mathrm{KClk}=\mathrm{C} \frac{\ell}{\mathrm{A}}$

$$
\begin{gathered}
\Rightarrow 4 \times 10^{-3}=\frac{1}{100} \times \frac{\ell}{\mathrm{A}} \\
\frac{\ell}{\mathrm{~A}}=0.4
\end{gathered}
$$

34 Conductance of $\mathrm{H}_{2} \mathrm{O}=\frac{1}{10000}=C$
$\mathrm{k}=\mathrm{C} \frac{\ell}{\mathrm{A}}=\frac{1}{10000} \times 0.4$
$\mathrm{k}=4 \times 10^{-5}$
For $\mathrm{NaCl} 125=\mathrm{k} \times \frac{1000}{\mathrm{M}}$
$\mathrm{k}=\mathrm{C} \frac{\ell}{\mathrm{A}}$;
For C
$\mathrm{C}_{\mathrm{NaCl}}+\mathrm{C}_{\text {water }}=\mathrm{C}_{\mathrm{NaCl} \text { (solution) }}$
$C+\frac{1}{10000}=\frac{1}{8000}$
$C=\frac{1}{8000}-\frac{1}{10000}=\frac{1}{40000}$
$\Rightarrow \mathrm{k}=\frac{1}{40000} \times 0.4=1 \times 10^{-5}$
$\Rightarrow 125=1 \times 10^{-5} \times \frac{1000}{M} \Rightarrow M=8 \times 10^{-5}$
Mole of $\mathrm{NaCl}=\frac{585}{58.5}=10$ mole
\Rightarrow Volume $=\frac{10}{8 \times 10^{-5}}=125000 \mathrm{~L}$

Comprehension \# 7 (Q. No. 36 to 38)

Q. 36 (C)
Q. 37 (D)
Q. 38 (D)
$36 \quad \lambda_{m}^{C}=\lambda_{m}^{\infty}-b \sqrt{C}$
when $\quad C_{1}=4 \times 10^{-4} \lambda_{m}^{C}=107$
and when $\quad C_{2}=9 \times 10^{-4} \lambda_{\mathrm{m}}=97$
so $107=\lambda_{m}^{\infty}-b \times 2 \times 10^{-2}$
$97=\lambda_{\mathrm{m}}^{\infty}-\mathrm{bx} 3 \times 10^{-2}$
$b=1000$
$\lambda_{m}=\lambda_{m}^{\infty}-b \sqrt{C}$
$\lambda_{m}^{\infty}=\lambda_{m}+b \sqrt{C}$
$=107+10^{3} \times 2 \times 10^{-2}$
$\lambda_{\mathrm{m}}^{\infty}=127 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ mole $^{-1}$
37 For $25 \times 10^{-4}(\mathrm{M}) \mathrm{NaCl}$ solution
$\lambda_{m}=\lambda_{m}^{\infty}-b \sqrt{C}$
$\lambda_{\mathrm{m}}=127-10^{3}\left(25 \times 10^{-4}\right)^{1 / 2}$
$\lambda_{\mathrm{m}}=127-10^{3} \times 5 \times 10^{-2}$
$\lambda_{\mathrm{m}}=77$
But $\lambda_{m}=\frac{K \times 1000}{M}, K=\left(\frac{\ell}{\mathrm{a}}\right) \times \frac{1}{\mathrm{R}}$
$\lambda_{m}=\left(\frac{\ell}{\mathrm{a}}\right) \times \frac{1}{\mathrm{R}} \times \frac{1000}{\mathrm{M}}$
$\lambda_{\mathrm{m}}=[$ Cell constant $] \times \frac{1000}{\mathrm{R} \times \mathrm{M}}$
$\Rightarrow 77=[$ Cell constant $] \times \frac{1000}{1000 \times 25 \times 10^{-4}}$
Cell constant $=77 \times 25 \times 10^{-4}=0.1925 \mathrm{~cm}^{-1}$

38 For $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution
$\mathrm{K}=\left(\frac{\ell}{\mathrm{a}}\right) \times \frac{1}{\mathrm{R}}=\frac{0.1925}{400}=4.81 \times 10^{-4} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$
$\lambda_{\mathrm{m}}=\frac{\mathrm{K} \times 1000}{\mathrm{M}}=\frac{4.81 \times 10^{-4} \times 1000}{\frac{5}{2} \times 10^{-3}}$
$\lambda_{\mathrm{m}}\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)=192.4 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}$

Comprehension \# 8 (Q. No. 39 to 41)

Q. 39 (A)
Q. 40 (C)

Q. 41 (B)

First conductance decreases due to nutralisation of free H^{+}ions of weak acid, then it increases due to formation of salt and after equivalence point it increases more fastly due to increasing of OH^{-}ions.

40 First conductance decreases due to nutralisation of strong acid H^{+}ion then after it increases due to nutralisation of weak acid and after equivalence point it increases more fastly.

At the equivalence point the concentrations will be $\left[\mathrm{Br}^{-}\right]=100 \mathrm{~m}^{3},\left[\mathrm{Na}^{+}\right]=100 \mathrm{~m}^{3}$

Therefore $\mathrm{k}_{\text {total }}=\kappa_{\mathrm{Br}^{-}}+\kappa_{\mathrm{Na}^{+}}=1.2 \mathrm{Sm}^{-1}=\mathbf{1 2} \times 10^{-1}$ Sm^{-1}.

NUMERICAL VALUE BASED

Q. 1 [9]

Mole ratio of $\mathrm{O}_{2}: \mathrm{Cl}_{2}=2: 1$
Charge ratio $\quad=4: 1$
$\left[\mathrm{OH}^{-}\right]$left $=\frac{1}{5} \times \frac{4.825}{96500} \mathrm{~mol} \mathrm{~L}^{-1}=10^{-5} \mathrm{M}$

$$
\mathrm{p}^{\mathrm{OH}}=5 \Rightarrow \mathrm{pH}=14-5=9
$$

Q. 2 [8]

$$
\mathrm{FeCr}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CrO}_{4}^{2-}
$$

$$
\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}
$$

$$
2 \mathrm{Cr}^{3+} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+6 \mathrm{e}^{-}
$$

n -factor $=7$
Theoretical requirement $=7 \mathrm{~F}$

$$
\begin{aligned}
& x \times \frac{87.5}{100}=7 \\
& x=\frac{700}{87.5}=8 F
\end{aligned}
$$

Q. 3 [4]

Since $\mathrm{Pd}^{\mathrm{n+}}+$ ne $\rightarrow \mathrm{Pd}$
For Pd, $\frac{W}{E}=\frac{i \times t}{96500}$

$$
\frac{2.977}{106.4 / n}=\frac{3 \times 1 \times 60 \times 60}{96500} \quad \mathrm{n}=4
$$

Q. 4 [0]
Q. 5 [1]
Q. 6 [6]
Q. 7 [9]
Q. 8 [4]
Q. 9 [3]

$$
m=\frac{E Q}{96500}
$$

$$
3.283 g=\frac{197 / x \times 4825}{96500}
$$

$x=$ valency of metal

Q. 10 [5]

KVPY

PREVIOUS YEAR'S
Q. 1 (A)
$0=1.1-\frac{0.0591}{2} \log \frac{\mathrm{Zn}^{+2}}{\mathrm{Cu}^{+2}}$
$1.1=\frac{0.0591}{2} \log \frac{\mathrm{Zn}^{+2}}{\mathrm{Cu}^{+2}}$
$\log \frac{\mathrm{Zn}^{+2}}{\mathrm{Cu}^{+2}}=37.3$
Q. 2 (B)

SRP \downarrow Reducing power \uparrow
Q. 3 (A)

Since conductance of H^{+}is highest so molar conductivity of HCl will be highest and after that conductance of $\mathrm{CH}_{3} \mathrm{COOH}$ will come
\therefore order $\mathrm{HCl}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{NaCl}>\mathrm{CH}_{3} \mathrm{COONa}$
Q. 4 (B)
Q. 5 (A)

$$
\lambda=\frac{\mathrm{h}}{\mathrm{mv}} \Rightarrow \mathrm{v}=\frac{\mathrm{h}}{\mathrm{~m} . \lambda}=\frac{6.62 \times 10^{-34}}{720 \times 10^{-3} \times 11 \times 10^{-10}}
$$

Q. 6 (B)
$\Delta \mathrm{G}^{\mathrm{o}}=-2.303 \times 8.314 \times 298 \log \left(3.8 \times 10^{-3}\right) \mathrm{J}$
$=13809.3876 \mathrm{~J}=13.809 \mathrm{KJ}$
$\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{nFE}{ }^{\mathrm{o}}$
$13809.387=-2 \times 96500 \times \mathrm{E}^{0}$
$\mathrm{E}_{\text {cell }}^{0}=.071$
Q. 7 (A)

Electrolysis of can centrated NaCl .
Cathode $\Rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+20 \mathrm{H}^{-}(\mathrm{aq})$
Anode $\Rightarrow 2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$
Duet to formation of OH^{-}at cathode pH of solution
increases.
Q. 8 (D)
$2 \mathrm{AgNO}_{3}+\mathrm{Cu} \longrightarrow \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
Metal can reduce that metal cation which is placed below it in reactivity series.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 [147]

$$
\begin{aligned}
& \mathrm{E}_{\text {Cell }}^{\mathrm{o}}=\left[\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathrm{o}}\right]_{\text {cathode }}-\left[\mathrm{E}_{\mathrm{Zg}^{2^{+}} / \mathrm{Zn}}^{\mathrm{o}}\right]_{\text {anode }} \\
& =0.8+0.76=1.56 \mathrm{~V}
\end{aligned}
$$

Anode: $\mathrm{Zn}(\mathrm{s}) \longrightarrow \mathrm{Zn}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-}$(oxidation)
Cathode: $2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Ag}(\mathrm{s})$ (Reduction)

$$
\begin{aligned}
& \mathrm{Zn}(\mathrm{~s})+2 \mathrm{Ag}+(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{+2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s}) \\
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{\text {Cell }}^{\mathrm{o}}-\frac{0.0591}{2} \log _{10}\left[\frac{\left[\mathrm{Zn}^{+2}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}\right] \\
& =1.56-\frac{0.0591}{2} \log _{10}\left[\frac{0.1}{10^{-4}}\right] \\
& =1.56-\frac{0.0591}{2} \times 3 \\
& =1.56-0.088=1.472 \mathrm{~V} \\
& =147 \times 10^{-2} \mathrm{C} \\
\mathrm{X} & =147
\end{aligned}
$$

Q. 2 [25]

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

1 mole of MnO_{4}^{-}require 5 Faraday charge
5 moles of MnO_{4}^{-}will require 25 Faraday
Q. 3 (1)
Q. 4 [144.54]
$\mathrm{Cu}+2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{NO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2} / \mathrm{H}^{+}}=\mathrm{E}_{1}^{\mathrm{o}}-\frac{0.059}{2} \log \frac{1}{\mathrm{x}^{2}(\mathrm{x})^{4}}$
$=0.79+0.059 \times 3 \log (x)$
$3 \mathrm{Cu}+2 \mathrm{~N} \mathrm{O}_{3}^{-}+8 \mathrm{H}^{+} \longrightarrow 3 \mathrm{Cu}^{2+}+2 \mathrm{NO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2} / \mathrm{H}^{+}}=\mathrm{E}_{2}^{\mathrm{o}}-\frac{0.059}{6} \log \frac{1}{\mathrm{x}^{2}(\mathrm{x})^{8}}$
$=0.96+\frac{0.059}{6} \times 10 \log (\mathrm{x})$
From (i) \& (ii) $0.79+0.059 \times 3 \log x$

$$
\begin{aligned}
& =0.96+\frac{0.059}{6} \times 10 \log (x) \\
& 0.059 \times \frac{8}{9} \log (x)=0.17 \\
& \log _{10} \times 2.16 \Rightarrow x 10^{2.16}=144.54
\end{aligned}
$$

Q. $5 \quad[0.3776]$

$$
\begin{aligned}
& 5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MNO}_{1 \mathrm{M}^{-}}^{\longrightarrow} \longrightarrow \begin{array}{c}
\mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O} \\
1 \mathrm{M}
\end{array} \\
& \mathrm{E}_{1}=\mathrm{E}^{\mathrm{o}}-\frac{0.59}{5} \log _{10}\left[\frac{1}{\left[\mathrm{H}^{+}\right]^{8}} \times \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]}\right]
\end{aligned}
$$

$$
=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{5} \log _{10}\left[\frac{1}{(1)^{8}}\right]=\mathrm{E}^{\mathrm{o}}
$$

$$
\mathrm{E}_{2}=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{5} \log _{10}\left[\frac{1}{\left(10^{-4}\right)^{8}} \times \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]}\right]
$$

$$
=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{5} \log _{10}\left[10^{32}\right]
$$

$$
=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{5} \times 32
$$

$$
\mathrm{E}_{1}-\mathrm{E}_{2}=\mathrm{E}^{\mathrm{o}}-\mathrm{E}^{\mathrm{o}}+\frac{0.059}{5} \times 32
$$

$$
=0.3776 \mathrm{~V}
$$

Q. 6 [288]

From Kohlrausch's law
$\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{BaSO}_{4}\right)=\lambda_{\mathrm{m}}^{\infty}\left(\mathrm{Ba}^{2+}\right)+\lambda_{\mathrm{m}}^{\infty}\left(\mathrm{SO}_{4}^{2-}\right)$
$\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{BaSO}_{4}\right)=\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{BaCl}_{2}\right)+\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ $-2 \Lambda_{\mathrm{m}}^{\infty}(\mathrm{HC} 1)$
$=280+860-2(426)$
$=288 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
Q. 7 [45]

$\mathrm{E}_{1}^{0}+2 \mathrm{E}_{2}^{0}=3 \mathrm{E}_{3}^{0}$
$\mathrm{E}_{1}^{0}=3 \mathrm{E}_{3}^{0}-2 \mathrm{E}_{2}^{0}$
$=3(-0.036)-2(-0.44)$
$=+0.772 \mathrm{~V}$
$\mathrm{E}_{\text {cell }}^{0}=\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}+\mathrm{E}_{\mathrm{I}^{-} / \mathrm{I}_{2}}^{0}=0.233$
$\Delta_{\mathrm{r}} \mathrm{G}^{0}=-2 \times 96.5 \times 0.233=-45 \mathrm{~kJ}$

Q. 8 [143]

Given conc ${ }^{\mathrm{n}}$ of $\mathrm{KCl}=\frac{\mathrm{m} \cdot \mathrm{mol}}{\mathrm{L}}$
: Conductance (G) $=0.55 \mathrm{mS}$
: Cell constant $\left(\frac{\ell}{\mathrm{A}}\right)=1.3 \mathrm{~cm}^{-1}$
To Calculate : Molar conductivity $\left(\lambda_{\mathrm{m}}\right)$ of sol.

$$
\begin{align*}
& \rightarrow \text { Since } \lambda_{\mathrm{m}}=\frac{1}{1000} \times \frac{\mathrm{k}}{\mathrm{~m}} \tag{1}\\
& \rightarrow \text { Molarity }=5 \times 10^{-3} \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& \rightarrow \text { Conductivity }=\mathrm{G} \times\left(\frac{\ell}{\mathrm{A}}\right)=0.55 \mathrm{mS} \times \frac{1.3}{\frac{1}{100}} \mathrm{~m}^{-1} \\
& =55 \times 1.3 \\
& \mathrm{eq}^{\mathrm{n}}(1) \\
& \Rightarrow \lambda_{\mathrm{m}}=\frac{1}{1000} \times \frac{55 \times 1.3}{\left(\frac{5}{1000}\right)} \frac{\mathrm{mSm}^{2}}{\mathrm{~mol}^{-1}} \\
& \Rightarrow 14.3 \frac{\mathrm{mSm}^{2}}{\mathrm{~mol}^{2}}
\end{align*}
$$

Q. $9 \quad$ (4)

The E° value for $\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}$ is +1.74 V because the most stable oxidation state of lanthanide series elements is +3 .
It means Ce^{3+} is more stable than Ce^{4+}.
Q. 10 [57]
$\kappa=\frac{1}{\mathrm{R}} \cdot \mathrm{G}^{*}$
For same conductivity cell, G^{*} is constant and hence κ.R. $=$ constant.
$\therefore 0.14 \times 4.19=\kappa \times 1.03$
or, κ of HCl solution $=\frac{0.14 \times 4.19}{1.03}$
$=0.5695 \mathrm{Sm}^{-1}$
$=56.95 \times 10^{-2} \mathrm{Sm}^{-1} \approx 57 \times 10^{-2} \mathrm{Sm}^{-1}$
Q. 11 (1)
Q. 12 [28]
Q. 13 [12]
Q. 14 [24]
Q. 15 [3]
Q. 16 [1]
Q. 17 [109]
Q. 18 (4)
Q. 19 [760]
Q. 20 [25]
Q. 21 (1)

Cell constant $=\left(\frac{\ell}{\mathrm{A}}\right) \Rightarrow$ Units $=\mathrm{m}^{-1}$
Molar conductivity $\left(\Lambda_{\mathrm{m}}\right) \Rightarrow$ Units $=\mathrm{Sm}^{2}$ mole $^{-1}$
Conductivity (K) \Rightarrow Units $=\mathrm{S} \mathrm{m}^{-1}$
Degree of dissociation $(\alpha) \rightarrow$ Dimensionless
\therefore (a)-(iii)
(b)-(i)
(c)-(iv)
(d) -(ii)
Q. 22 [26]

JEE-ADVANCED

PREVIOUS YEAR'S

Comprehension \# 1 (Q. $1 \&$ Q.2)

Q. 1 (B)
$\mathrm{M}(\mathrm{s})\left|\mathrm{M}^{+}(\mathrm{aq}, 0.05 \mathrm{M}) \| \mathrm{M}^{+}(\mathrm{aq}, 1 \mathrm{M})\right| \mathrm{M}(\mathrm{s})$
Anode:

(aq) $+\mathrm{e}^{-}$
Cathode : $\quad \mathrm{M}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{M}(\mathrm{s})$

$$
\left.\left.\mathrm{M}^{+}(\mathrm{aq})\right|_{\mathrm{c}} \rightleftharpoons \mathrm{M}^{+}(\mathrm{aq})\right|_{\mathrm{a}}
$$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{\text {cell }-}^{\circ} \frac{0.0591}{1} \log \frac{\mathrm{M}^{+}(\mathrm{aq}) \mathrm{I}_{\mathrm{a}}}{\mathrm{M}^{+}(\mathrm{aq}) \mathrm{I}_{\mathrm{c}}} \\
& =0-\frac{0.0591}{1} \log \left\{\frac{0.05}{1}\right\} \\
& =+\mathrm{ve}=70 \mathrm{mV} \text { and hence } \Delta \mathrm{G}=-\mathrm{nFE}_{\text {cell }}=-\mathrm{ve} .
\end{aligned}
$$

Q. 2 (C)

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =\frac{-0.0591}{1} \log \left\{\frac{0.0025}{1}\right\}=-\frac{0.0591}{1} \log \left\{\frac{0.05}{20}\right\} \\
& =70 \mathrm{mV}+\frac{0.0591}{1} \log 20=140 \mathrm{mV} .
\end{aligned}
$$

Q. 3 (D)

Q. 4 (D)
$\mathrm{E}=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{4} \log \frac{\left[\mathrm{Fe}^{2+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{4} \mathrm{P}_{2}}$
$=1.67-\frac{0.06}{4} \log \frac{\left(10^{-3}\right)^{2}}{\left(10^{-3}\right)^{4} \times 0.1}=1.67-\frac{0.03}{2} \log 10^{7}$
$=1.67-\frac{0.03}{2} \times 7=1.67-0.105=1.565=1.57 \mathrm{~V}$.

Comprehension \# 2 (Q. 5 \& Q.6)

Q. 5 (B)
$\mathrm{M}\left|\mathrm{M}^{2+}(\mathrm{aq}) \| \mathrm{M}^{2+}(\mathrm{aq})\right| \mathrm{M}$ 0.001 M

Anode :
$\mathrm{M} \longrightarrow \mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
Cathode : $\quad \mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{M}$

$$
\mathrm{M}^{2+}(\mathrm{aq})_{\mathrm{c}} \rightleftharpoons \mathrm{M}^{2+}
$$

(aq) ${ }_{\mathrm{a}}$
$\mathrm{E}_{\text {cell }}=0-\frac{0.059}{2} \log \left\{\frac{\mathrm{M}^{2+}(\mathrm{aq})_{\mathrm{a}}}{10^{-3}}\right\}$
$0.059=-\frac{0.059}{2} \log \left\{\frac{\mathrm{M}^{2+}(\mathrm{aq})_{\mathrm{a}}}{10^{-3}}\right\}$
$-2=\log \left\{\frac{M^{2+}(\mathrm{aq})_{\mathrm{a}}}{10^{-3}}\right\}$
$10^{-2} \times 10^{-3}=\mathrm{M}^{2+}(\mathrm{aq})_{\mathrm{a}}=$ solubility $=\mathrm{s}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^{3}=4 \times\left(10^{-5}\right)^{3}=4 \times 10^{-15}$
Q. 6 (D)
$\Delta \mathrm{G}=-\mathrm{nFE}_{\text {cell }}=-2 \times 96500 \times 0.059 \times 10^{-3} \mathrm{~kJ} / \mathrm{mole}$ $=-11.4 \mathrm{~kJ} / \mathrm{mole}$.
Q. 7 (A)
(P) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}+\mathrm{CH}_{3} \mathrm{Y} \mathrm{YOOH}$

(aq) $+\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}(\mathrm{aq})$
As $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid, its conductivity is already less. On addition of weak base, acid-base reaction takes place and new ions are created. So conductivity increases.
(Q) $\mathrm{KI}(0.1 \mathrm{M})+\mathrm{AgNO}_{3}(0.01 \mathrm{M}) \longrightarrow \mathrm{AgI} \downarrow$ $(\mathrm{ppt})+\mathrm{KNO}_{3}(\mathrm{aq})$.
As the only reaction taking place is precipitation of AgI and in place of
$\mathrm{Ag}^{+}, \mathrm{K}^{+}$is coming in the solution, conductivity remain nearly constant and then increases.
$(\mathrm{R}) \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{KOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COOK}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{OH}^{-}(\mathrm{aq})$ is getting replaced by $\mathrm{CH}_{3} \mathrm{COO}^{-}$, which has poorer conductivity.

So conductivity dereases and then after the end point, due to common ion effect, no further creation of ions take place. So, conductivity remain nearly same.
$(\mathrm{S}) \mathrm{NaOH}+\mathrm{HI} \longrightarrow \mathrm{NaI}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
As H^{+}is getting replaced by Na^{+}conductivity dereases and after end point, due to OH^{-}, it increases.
So answer of 39 is : (P)-(3); (Q) - (4); (R)-(2); (S)(1). Answer is (D).
Q. 8 (D)
(P) $\mathrm{E}_{\mathrm{Fe}^{3+}+\mathrm{Fe}}^{\mathrm{o}} \mathrm{Fe}^{3+} \underset{\mathrm{n}=1}{\stackrel{+0.77 \mathrm{~V}}{\longrightarrow}} \mathrm{Fe}^{2+} \xrightarrow[\mathrm{n}=2]{\stackrel{-0.44 \mathrm{~V}}{\longrightarrow}} \underset{\mathrm{nV}}{\mathrm{Fe}}$
$\Rightarrow 1 \times 0.77+2 \times(-0.44)=3 \times x$
$\Rightarrow \mathrm{x}=-\frac{0.11}{3} \mathrm{~V} \simeq-0.04 \mathrm{~V}$.
(Q) $4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{H}^{+}+4 \mathrm{OH}^{-}$

$+0.4 \mathrm{~V}$
$4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{H}^{+}+$
$4 \mathrm{OH}^{-}$
$-0.83 \mathrm{~V}$
(R) $\mathrm{E}_{\left(\mathrm{Cu}^{2+}+\mathrm{Cu} \rightarrow 2 \mathrm{Cu}^{+}\right)}^{\mathrm{o}}$

$$
\Rightarrow \begin{aligned}
& \begin{array}{c}
\mathrm{x}=0.16 \mathrm{~V} . \\
\mathrm{Cu}^{2+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+} \\
+ \\
\mathrm{Cu} \longrightarrow \mathrm{Cu}^{+}+\mathrm{e}^{-} \quad-0.16 \mathrm{~V}
\end{array} \\
& \\
& \quad \mathrm{Cu}^{2+}+\mathrm{Cu} \longrightarrow 2 \mathrm{Cu}^{+}-0.36 \mathrm{~V}
\end{aligned}
$$

However, in the given option, -0.18 V is printed.
(s) $\mathrm{E}_{\left(\mathrm{Cr}^{3+}, \mathrm{Cr}^{2+}\right)}^{\mathrm{Cr}^{3+} \xrightarrow[\mathrm{n}=1]{\mathrm{x}} \mathrm{Cr}^{2+} \xrightarrow[\mathrm{n}=2]{-0.91 \mathrm{~V}} \underset{\uparrow}{\mathrm{Cr}} \mathrm{Cr}}$
$\mathrm{x} \times 1+2 \times(-0.91)=3 \times(-0.74)$
$x-1.82=-2.22 \Rightarrow \quad x=-0.4 V$
Hence, most appropriate is (D).
$(\mathrm{P})-(3) ;(\mathrm{Q})-(4) ;(\mathrm{R})-(1) ;(\mathrm{S})-2$.

Q. 9 (A)

Salt bridge is introduced to keep the solutions of two electrodes separate, such that the ions in electrode do not mix freely with each other. But it cannot stop the process of diffusion.
It does not participate in the chemical reaction. However, it is not necessary for occurence of cell reaction, as we know that designs like lead accumulator, there was no salt bridge, but still reactions takes place.

Q. 10 [4]

$\mathrm{m}^{+} \longrightarrow \mathrm{m}^{3+}+2 \mathrm{e}^{-}$
$\Delta \mathrm{G}^{0}=-\mathrm{nFE}^{0}$ For 1 mole of m^{+}
$\Delta \mathrm{G}^{0}=-2 \times 96500 \times(-0.25) \mathrm{J}$
$=+48250 \mathrm{~J} / \mathrm{mole}=48.25 \mathrm{KJ} / \mathrm{mole}$
Energy released by conversion of 1 mole of
$\mathrm{x} \longrightarrow \mathrm{y}$
$\Delta \mathrm{G}=-193 \mathrm{KJ}$
Hence mole of m^{+}convert
$\frac{193}{48.25}=4$
$\mathrm{m}^{+} \longrightarrow \mathrm{m}^{3+}+2 \mathrm{e}^{-}$
$\Delta \mathrm{G}^{0}=-\mathrm{nFE}^{0} \quad \mathrm{~m}^{+}$
$\Delta \mathrm{G}^{0}=-2 \times 96500 \times(-0.25) \mathrm{J}$
$=+48250 \mathrm{~J} / \mathrm{mole} \quad=48.25 \mathrm{KJ} / \mathrm{mole}$

$$
\begin{aligned}
& x \longrightarrow y \\
& \frac{193}{48.25}=4
\end{aligned}
$$

$$
\Delta \mathrm{G}=-193 \mathrm{KJ}
$$

Q. 11 [3]

$\lambda_{\mathrm{X}^{-}}^{\circ} \approx \lambda_{\mathrm{Y}^{-}}^{{ }^{-}}$
$\Rightarrow \lambda_{\mathrm{H}^{+}}^{0}+\lambda_{\mathrm{X}^{-}}^{0} \approx \lambda_{\mathrm{H}^{+}}^{0}+\lambda_{\mathrm{Y}^{-}}^{0}$

$$
\begin{equation*}
\Rightarrow \lambda_{H X}^{\circ} \approx \lambda_{H Y}^{\circ} \tag{1}
\end{equation*}
$$

Also $\frac{\lambda_{\mathrm{m}}}{\lambda_{\mathrm{m}}{ }^{\circ}}=\alpha$, So $\lambda_{\mathrm{m}}(\mathrm{HX})=\lambda_{\mathrm{m}}^{\circ} \alpha_{1}$
and $\lambda_{\mathrm{m}}(\mathrm{HY})=\lambda_{\mathrm{m}}^{\circ} \alpha_{2}$
(Where α_{1} and α_{2} are degrees of dissociation of HX and HY respectively.)
Now, Given that

$$
\begin{align*}
& \lambda_{\mathrm{m}}(\mathrm{HY})=10 \lambda_{\mathrm{m}}(\mathrm{HX}) . \\
\Rightarrow & \lambda_{\mathrm{m}}^{\circ} \alpha_{2}=10 \times \lambda_{\mathrm{m}}^{\circ} \alpha_{1} \\
& \alpha_{2}=10 \alpha_{1} \tag{2}\\
\mathrm{~K}_{\mathrm{a}}= & \frac{\mathrm{C} \alpha^{2}}{1-\alpha}, \text { but }
\end{align*}
$$

therefore $\mathrm{K}_{\mathrm{a}}=\mathrm{C} \alpha^{2}$.
$\Rightarrow \frac{\mathrm{K}_{\mathrm{a}}(\mathrm{HX})}{\mathrm{K}_{\mathrm{a}}(\mathrm{HY})}=\frac{0.01 \alpha_{1}^{2}}{0.1 \alpha_{2}^{2}}=\frac{0.01}{0.1} \times\left(\frac{1}{10}\right)^{2}=\frac{1}{1000}$.
$\Rightarrow \log \left(\mathrm{K}_{\mathrm{a}}(\mathrm{HX})\right)-\log \left(\mathrm{K}_{\mathrm{a}}(\mathrm{HY})\right)=-3$.
$\Rightarrow \mathrm{pK}_{\mathrm{a}}(\mathrm{HX})-\mathrm{pK}_{\mathrm{a}}(\mathrm{HY})=3$.
Q. 12 (D)
$\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}^{+}+2 e^{-}$
$M^{4+}(a q)+2 e^{-} \longrightarrow M^{2+}(a q)$
$E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.0591}{2} \log 10^{x} \times \frac{1^{2}}{1}$
$0.092=0.151-\frac{0.0591}{2} \log ^{x}$
$x=2$
Q. 13 (C)
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+2.303 \mathrm{RT} \log _{10} \mathrm{Q} ; \mathrm{Q}=\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}$
$=-2 \mathrm{~F}(1.1)+2.303 \mathrm{RT} \log _{10} 10$
$=2.303 \mathrm{RT}-2.2 \mathrm{~F}$
Q. 14 [6]
$\mathrm{C}=0.0015 \mathrm{M} \quad \ell=120 \mathrm{~cm}$
$\mathrm{G}=5 \times 10^{-7} \mathrm{~s} \quad \mathrm{a}=1 \mathrm{~cm}^{2}$

$$
\mathrm{G}=\kappa \times \frac{\mathrm{a}}{\ell}
$$

$5 \times 10^{-7}=\kappa \times \frac{1}{120}$

$$
\begin{aligned}
& \kappa=6 \times 10^{-5} \mathrm{~s} \mathrm{~cm}^{-1} \\
& \Lambda_{\mathrm{m}}^{\mathrm{c}}=\frac{\kappa \times 1000}{\mathrm{M}}=\frac{6 \times 10^{-5} \times 1000}{0.0015} \\
& \mathrm{pH}=4 \\
& {\left[\mathrm{H}^{+}\right]=10^{-4}=\mathrm{c} \alpha=0.0015 \alpha} \\
& \alpha=\frac{10^{-4}}{0.0015}
\end{aligned}
$$

$$
\alpha=\frac{\Lambda_{\mathrm{m}}^{\mathrm{c}}}{\Lambda_{\mathrm{m}}^{\mathrm{o}}} \Rightarrow \frac{10^{-4}}{0.0015}=\frac{\frac{6 \times 10^{-5} \times 1000}{0.0015}}{\Lambda_{\mathrm{m}}^{\circ}}
$$

$$
\Lambda_{\mathrm{m}}^{\mathrm{o}}=6 \times 10^{2} \mathrm{~s} \mathrm{~cm}^{2} \mathrm{~mole}^{-1}
$$

Q. 15 [10]

$\mathrm{Mg}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
$\mathrm{E}_{\text {cell }}^{\circ}=2.70 \quad \mathrm{E}_{\text {cell }}=2.67 \begin{gathered}\mathrm{Mg}^{2+}=\mathrm{x} \mathrm{M} \\ \mathrm{Cu}^{2+}=1 \mathrm{M}\end{gathered}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \mathrm{x}$
$2.67=2.70-\frac{\mathrm{RT}}{2 \mathrm{~F}} \ln \mathrm{x}$
$-0.03=-\frac{R \times 300}{2 F} \times \ln x$

In $x=\frac{0.03 \times 2}{300} \times \frac{F}{R}=\frac{0.03 \times 2 \times 11500}{300 \times 1}$
$\ln x=2.30=\ln (10)$
$\mathrm{x}=10$

Q. 16 (3)

Q. 17
[13.32]
$\mathrm{E}_{\text {cell }}^{0}=1.23-0.00=1.23 \mathrm{~V}$
$\Delta \mathrm{G}_{\text {cell }}^{0}=-\mathrm{nFE}_{\text {cell }}^{0}=-2 \times 96500 \times 1.23 \mathrm{~J}$
\therefore Work derived from this fuel cell
$=\frac{70}{100} \times\left(-\Delta \mathrm{G}_{\text {cell }}^{0}\right) \times 10^{-3}=\mathrm{xJ}$
Since insulated vessel, hence q=0 From equation, for monoatomic gas,
$\mathrm{w}=\Delta \mathrm{U} \quad \Rightarrow \mathrm{x}=\mathrm{nC}_{\mathrm{v}, \mathrm{m}} \Delta \mathrm{T}\left\{\mathrm{C}_{\mathrm{v}, \mathrm{m}}=\frac{3 \mathrm{R}}{2}\right\}$
or, $\frac{70}{100} \times(2 \times 96500 \times 1.23) \times 10^{-3}=1 \times \frac{3}{2} \times 8.314 \times \Delta \mathrm{T}$
$\therefore \Delta \mathrm{T}=13.32$
Q. 18 (A, B,C)
$\mathrm{x}(\mathrm{s}) \longrightarrow \mathrm{x}^{+2}(0.001 \mathrm{M})+2 \mathrm{e}-$ (anode)
$\mathrm{y}^{+2}(0.1 \mathrm{M})+2 \mathrm{e}^{-} \longrightarrow \mathrm{y}(\mathrm{s})$ (cathode)
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.06}{2} \log \frac{\mathrm{x}^{+2}}{\mathrm{y}^{+2}}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}+0.06$
(A) Cd and $\mathrm{Ni}^{\circ}{ }_{\text {cell }}=+0.4-0.24 ; \mathrm{E}_{\text {cell }}=0.22$
(B) Cd and $\mathrm{Fe}^{\mathrm{E}} \mathrm{E}_{\text {cell }}^{\circ}=-0.04 ; \mathrm{E}_{\text {cell }}=0.02$
(C) Ni and $\mathrm{PbE}_{\text {cell }}^{\circ}=0.11 ; \mathrm{E}_{\mathrm{cell}}=0.17$
(D) Ni and $\mathrm{Fe}^{\circ} \mathrm{E}_{\text {cell }}=-0.2 ; \mathrm{E}_{\text {cell }}=-0.14$
since in (A) (B) (C) $\mathrm{E}_{\text {cell }}$ is positive hence answer is (A) (B) (C).

Question Stem for Question Nos. 19 and 20

Q. 19 [0.21 or 0.22]

$$
\mathrm{K}_{\mathrm{a}}=\frac{\Lambda_{\mathrm{m}}^{2} \mathrm{C}}{\Lambda_{\mathrm{m}}^{\circ}\left(\Lambda_{\mathrm{m}}^{\circ}-\Lambda_{\mathrm{m}}\right)}
$$

$\mathrm{K}_{\mathrm{a}}=\frac{\left(\mathrm{y} \times 10^{2}\right)^{2} \times \mathrm{C}}{4 \times 10^{2}\left(4 \times 10^{2}-\mathrm{y} \times 10^{2}\right)}=$
$\frac{\left(3 \mathrm{y} \times 10^{2}\right)^{2} \times \frac{\mathrm{C}}{20}}{4 \times 10^{2}\left(4 \times 10^{2}-3 \mathrm{y} \times 10^{2}\right)}$
$\Rightarrow \frac{1}{(4-y)}=\frac{9}{20(4-3 y)} \Rightarrow y=\frac{44}{51}$
$\alpha=\frac{\frac{44}{51} \times 10}{4 \times 10^{2}}$
$\alpha=0.2156(\alpha=0.22$ or 0.21$)$
$\mathrm{y}=0.86$
Q. 20 [0.86]

Surface Chemistry

EXERCISES

ELEMENTARY

Q. 1 (4)

Chemical adsorption is irreversible due to formation of new bonds and compounds.
Q. 2 (2)
Q. 3 (4)
Q. 4 (3)
Q. 5 (4)

Chemisorption first increases and then decreases with temperature.
Q. 6 (2)

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \xrightarrow[\mathrm{As}_{2} \mathrm{O}_{3} \text { (poison) }]{\mathrm{Pt} \text { (Catlyst) }} 2 \mathrm{SO}_{3}
$$

Q. 7 (2)

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{NO}} 2 \mathrm{SO}_{3}
$$

Q. 8 (1)

Q. 9 (3)
Q. 10 (4)

$$
\begin{aligned}
& 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow[1100 \mathrm{~K}]{\text { Pt guage }} 4 \mathrm{NO} \xrightarrow{\mathrm{O}_{2}} 4 \mathrm{NO}_{2} \\
& \xrightarrow{2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}} 4 \mathrm{HNO}_{3}
\end{aligned}
$$

Q. 11 (2)

Q. 12 (4)
Q. 13 (2)
Q. 14 (3)

Q. 15 (2)

Lyophilic possesses solvent loving nature and thus a thin layer of dispersed phase is formed round sol particles

Q. 28	(2)
Q. 29	(4)
Q. 30	(2)

Protective power $\propto \frac{1}{\text { Gold number }}$
Hence, the correct order of protective power is B $>\mathrm{A}>\mathrm{C}>\mathrm{D}$.

Q. 31 (4)

The ability of an ion to bring about coagulation of a given calloid depend upon both the magnitude and sign of its charge.

Q. 32 (2)

Q. 33 (2)

JEE-MAIN
OBJECTIVE QUESTIONS

Q. 1 (4)

Activation energy is required for chemical adsorption.

Q. 2 (2)

Adsorption is dependent on temperature.

Q. 3 (2)

As temperature increases, physical adsorption decreases because physical adsorption is exothermic and reversible process.

Q. 4 (2)

A gas with high critical temperature has high vander waal force due to which they are more easily liquefiable \& hence more easily adsorb as adsorption decreases their energy
Q. 5 (4)

Extent of adsorption increase with increase in critical temperature

Q. 6 (3)

Extent of adsorption \& intermoleculer force \propto vander waal const. (1) $\mathrm{NH}_{3}>\mathrm{CO}_{2}>\mathrm{CH}_{4}$
Q. 7 (2)

Refer theory
Q. 8 (1)

Accumulation substance on the surface of the other substance is known as adsorption.

Q. $9 \quad$ (2)

The volume of N_{2} at STP required to cover the iron surface with monolayer $=8.15 \mathrm{ml} \mathrm{gm}^{-1}$
Area occupied by single molecule $=16 \times 10^{-18} \mathrm{~cm}^{2}$

22400 ml of N_{2} at STP contains $=\mathrm{N}_{\mathrm{A}}$ molecule of N_{2}
$\therefore 8.15 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .=\frac{8.15 \times N_{\mathrm{A}}}{22400}=2.19 \times 10^{20}$
molecule of N_{2}
Area occupied by 2.19×10^{20} molecule of $\mathrm{N}_{2}=2.19$ $\times 10^{20} \times 16 \times 10^{-18} \mathrm{~cm}^{2}=35.06 \times 10^{2} \mathrm{~cm}^{2}$
surface area of the iron adsorbed $=0.35 \mathrm{~m}^{2} \mathrm{gm}^{-1}$
In short $\mathrm{A}=$
$\frac{\text { Volume covered by the } \mathrm{N}_{2} \text { molecule } \times \mathrm{N}_{\mathrm{A}} \times \text { Area occupied by single molcule }}{22400}$
(1)

Physical adsorption decreases as temperature increases.

Q. 11 (2)

On increasing pressure more molecule will into contact with the surface of solid adsorbent.

Q. 12 (4)

Vander waal force is responsible for adsorption.

Q. 13 (1)

Softening of hard water : Ion exchange resins used for softening of hard water is based upon selective and competive adsorption of ions on resins.
$\mathrm{Na}_{2} \mathrm{Z}+\mathrm{Ca}^{+2} \longrightarrow \mathrm{CaZ}+2 \mathrm{Na}^{+}$
The organic polymers containing groups like -COOH , $-\mathrm{SO}_{3} \mathrm{H}$ and $-\mathrm{NH}_{2}$ etc. possess the property of selective adsorption of ions from solution. These are quite useful in the softening of water.

Q. 14 (3)

Chemical adsorption is irreversible.

Q. 15 (3)

Total surface area of eight cubes $=8 \times 6 \times\left(\frac{1}{2} \times \frac{1}{2}\right)$
Apply the formula
Surface area on n split of a cube $=8^{n} \times 6 \times\left(\frac{1}{2}\right)^{2 n}$
$6291456=8^{n} \times 6 \times\left(\frac{1}{2}\right)^{2 n}$

Q. 16 (2)

Colloidal range of particle is $1 \mathrm{~nm}-1000 \mathrm{~nm}$
Q. 17 (4)

Finely divided iron is used as catalyst in manufacture of NH_{3}.
Q. 18 (3)

Catalyst provides new path to the chemical reaction which has lower value of activation energy. Reactant
and product with not be affected, so there will not be any change in state parameter like enthalpy and internal energy.

Q. 19 (2)

For eg. Mn^{2+} auto catalyses $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{HMnO}_{4}+\mathrm{H}^{+}$ $\rightarrow \mathrm{Cr}+\mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Q. 20 (4)

Milk is emulsion

Q. 21 (2)

colloids are heterogeneous in nature \& hence consist of two phase.

Q. 22 (2)

Emulsion :- $(\ell+\ell)$ dispersed phase \& dispersion medium both are liquid

Q. 23 (2)

Gelation, starch \& gum are organic in nature \& hence lyophilic in nature but S_{8} is inorganic in nature \& hence lyophobic in nature

Q. 24 (2)

Tyndall effect is due to scattering of light
Q. 25 (1)

Milk is emulsion (butter fat dispersed in water).
Q. 26 (4)
Q. 27 (2)

Fog (liquid + gas) dispersed phase Dispersion medium.
Q. 28 (2)

Q. 29 (1)

Ultra-microscope is based on tyndall effect which is based on scattering of light.

Q. 30 (1)

Molecular size for colloidal range in $1 \mathrm{~nm}-1000 \mathrm{~nm}$.
Q. 31 (3)

Lyophilic colloids do not move in presence of electric field due to uncharged nature.

Q. 32 (2)

$\mathrm{As}_{2} \mathrm{~S}_{3}$ colloid can be represented as $\mathrm{As}_{2} \mathrm{~S}_{3} \mathrm{~s}^{2-}$ so it is negatively charged.

Q. 33 (3)

Crystalloid \& colloids differes in particle size \& due to smaller size of crystalloid.

Q. 34 (4)

Ethanol is alcohol to the colloidal system is called alcosols.
Q. 35 (1)

Physical adsorption is multi-layered.
Q. 36 (3)

It is the property of colloidal solution.
Q. 37 (4)
Q. 38 (2)

Due to charge on colloidal particle they move under the influence of electric field.
Q. 39 (1)

Refer theory
Q. 40 (2)

Neutralization of charge on colloid as per hardy shulze rule.

Q. 41 (3)

As per Hardy shulze rule coagulation power $\alpha+\mathrm{ve}$ charge which is maximum in Al^{3+}.
Q. 42 (1)

Different colloidal particle will provide different colour to the sol.
Q. 43 (3)

Alums due to the charged nature of colloidal particle \& hence coagular impurities in muddy water as per shulze rule.
Q. 44 (4)
Q. 45 (2)

Process by which precipitate is converted into colloid is known as peptisation.
Q. 46 (3)

Blood is a colloidal solution containing a -ve charge colloidal particle (Albuminoid), bleeding can be stopped by use of alum or FeCl_{3} solution. The addition of Al^{3+} or Fe^{3+} causes coagulation of blood, so bleeding stops.
Q. 47 (3)

Gold number $\propto \frac{1}{\text { Pr otecting power }}$.
Q. 48 (1)

Their protective action is because of their lyophilic nature.
Q. 49 (3)

10 ml of 1 M NaCl contains $\mathrm{NaCl}=10 \times 1=10$ milli mole
200 ml of $\mathrm{As}_{2} \mathrm{~S}_{3}$ required NaCl for the coagulation $=$ 10 milli mole
$\therefore 1000 \mathrm{ml}$ of $\mathrm{As}_{2} \mathrm{~S}_{3}$ required NaCl for the coagulation $=10 \times 1000 / 200=50$ milli mole
Q. 50 (3)

Effectiveness of ion in coagulation \propto charge on coagulating ion.
Q. 51 (4)

Ferric hydroxide is a positive sol.
Q. 52 (3)

Micelle is a associated form of colloid
Q. 53 (2)

Liquid in liquid is known as emulsion.
Q. 54 (3)

AT (CMC) critical micellization concen-tration, the surfactant molecules associate to form miscelles. For soap CMC is $10^{-3} \mathrm{~mol} / \mathrm{litre}$

Q. 55 (1)

Loss of water from gel is known as synerisis.

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)
$\mathrm{V}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2}}=\frac{720 \times 1000}{480}=1500 \mathrm{ml}$
Volume of gas in the flask $=1000-$ volume of charcoal
$=1000-\frac{5}{1.25}=996 \mathrm{ml}$
Total volume of gas adsorbe by charcoal $=1500-$ $996=504 \mathrm{ml}$
Volume of gas adsorbe by per gram of charcoal $=$ $\frac{504}{5}=\mathbf{1 0 0 . 0 8} \mathbf{~ m l}$

Q. 2 (B)

Physical adsorption is reversible in nature.
Q. 3 (C)

Adsorption is a bulk phenomena.
Q. 4 (B)

As in adsorption $\Delta \mathrm{S}=-\mathrm{ve}$
$\Delta \mathrm{G}=-\mathrm{ve}$
$\Delta \mathrm{H}=-\mathrm{ve}$

Q. 5 (D)

All are facts to remember.
(A)

Reddish brown sol is prepared by adding FeCl_{3} in $\mathrm{Fe}(\mathrm{OH})_{3}$ precipitate.

Q. 7 (A)

Lyophobic colloid are solvent hating.
Q. 8 (D)

Lyophilic solution is easily solvated and quite stable in solvent.
Q. 9 (B)

Silver sol in water is an example of lyophobic solution.
Q. 10 (A)

Colloidal particle has size range of 1 to 1000 nm .
Q. 11 (B)

Cellulose is macromolecular colloid.

Q. 12 (A)

Similar charged colloidal particles will repel each other so colloidal system will not be suspended.
Q. 13 (C)

Smoke is solid in gas dispersion.

Q. 14 (A)

Smoke is blue because of scattering of light.

Q. 15 (B)

Viscosity of lyophilic colloid is less than water.
Q. 16 (A)

Small particles has more random behave.
Q. 17 (B)

Soap + water forms micelle which is an associated colloid.
Q. 18 (C)
$\frac{\text { coagulation power of } \mathrm{AlCl}_{3}}{\text { coagulation power of } \mathrm{NaCl}}$
$=\frac{\text { coagulation value of } \mathrm{NaCl}}{\text { coagulation value of } \mathrm{AlCl}_{3}}$.
Q. 19 (B)

Gold sol is multimolecular colloid.
Q. 20 (D)

All three are example of coagulation.
Q. 21 (A)

Lower the gold number, higher the producting powe of lyophillic colloid.
Q. 22 (C)
$0.03=$ weight of Hb in $\mathrm{mg} \times 10 / 100$
weight of Hb in $\mathrm{mg}=0.30$.

Q. 23 (D)

Higher the charge on coagulating ion, lesser the flocculation value.
Q. 24 (C)

Impurity destabilises the solution.
Q. 25 (D)

Coagulation depends on charge.
Q. 26 (D)
$\mathrm{As}_{2} \mathrm{~S}_{3} / \mathrm{S}^{2-}$ is negatively charged so cation is effective in coagulation
$\therefore \mathrm{Al}^{3+}$ is effective.
Q. 27 (C)

More the charge on cation, more the effectiveness of the electrolyte.
Q. 28 (B)

Potential difference between two layer is known as zeta potential.

Q. 29 (B)

Micelles have large molar mass so less colligative property.

Q. 30 (C)

Emulsion is liquid in liquid sol.

Q. 31 (D)

Liquid in solid sol is gel.
Q. 32 (D)

Sponge will be completely soaked by water, so it is absorption.
Q. 33 (A)

Monolayer is formed during chemisorption.

Q. 34 (A)

Emulsifier stabilises the emulsion.

JEE-ADVANCED

MCQ/COMPREHENSION/MATCHING

Q. $1 \quad(\mathrm{~A}, \mathrm{C})$

Physisorption is reversible and its extent increases with pressure.

Q. 2 (A,B,D)

Physical adsorption is due to vander waal force net by free valency.

Q. 3 (B,C)

This is because of absorption.

Q. 4 (A,B,D)

Chemisorption is monolayer phenomenon.
Q. 5 (B, D)

Colloidal particle diameter is $10^{-9} \mathrm{~m}$ to $10^{-6} \mathrm{~m}$.
Q. 6 (B,C,D)
$\mathrm{Fe}(\mathrm{OH})_{3}$ is postive sol, remaining all three are negative sol.
Q. 7 (B, C)

Solid in gas is known as aerosol.
Q. 8 (A, B)

Gold number is the index of protective power of lyophillic colloidal for standard gold sol.
Q. 9 (A, B, C)

Facts to remember.
Q. 10 (A,B,D)
Q. 11 (A,B,C)

Except paramagnetism all are properties of sol.
Q. 12 (A,B,D)

Egg albumin is lyophlic colloid.

Q. 13 (B,C,D)

$\mathrm{As}_{2} \mathrm{~S}_{3}$ is negatively charged.

Q. 14 (B, D)

Gold sol and $\mathrm{Fe}(\mathrm{OH})_{3}$ sol are hydrophobic.
Q. 15 (A,B,D)

When liquid is dispersed in liquid it is called emulsion.
Q. 16 (A,B)

Refer properties of lyophillic sols.
Q. 17 (A,B,D)
Q. 18 (A, B)

Positive and negative sol will precipitate each other.
Q. 19 (A,B,C)
Q. 20 (B,C,D)

Organic sol. are lyophillic.
Q. 21 (A,B)

Since gold is metal so it is prepered by bredig's arc method
$\mathrm{AuCl}_{3}+\mathrm{SnCl}_{2} \rightarrow \mathrm{Au}+\mathrm{SnCl}_{4}$
Q. 22 (A,B,C,D)
Q. 23 (A, C)

Egg albumin is marcomolecular colloid and soap solution is associated colloid.
Q. 24 (A, C)

Delta formation is because of coagulation.
Q. 25 (A,C,D)

Sulphur being inorganic in nature so, it is lyophobic \& rest are organic in nature.
Q. 26 (A,D)
$\mathrm{AgI}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgI} / \mathrm{Ag}^{+}+$ve charge colloidal particle \& hence - ve charge is effective in coagulation.

Comprehension \# 1 (Q. No. 27 to 29)
Q. 27 (C)

Co can displace remaining gas as CO involve dipoledipole interation but $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2}$ involves london force which is weakest in nature \& hence CO as more tendency as adsorption.
Q. 28 (B)

As per Le chatelier principle increase in temperature causes deadsorption.
Q. 29 (A)

Activated charcoal is more porous \& hence adsorbs gases quantitively.

Comprehension \# 2 (Q. No. 30 to 32)

Q. 30 (A)

Silica gel is used to adsorb water.
Q. 31 (A)

The process of imbibing water when elastic gel are placed in water is called as imbibation.
Q. 32 (B)

Interconversion of sol and gel is known as thixotropy.
Comprehension \# 3 (Q. No. 33 to 35)
Q. 33 (A)
AgNO_{3} (excess) $+\mathrm{KI} \longrightarrow \mathrm{AgI}$ $\xrightarrow{+\mathrm{AgNO}_{3} \text { (remaining) }} \mathrm{AgI} / \mathrm{Ag}^{+}$
Q. 34 (C)

AgI coagulates mist hanging in air.
Q. 35 (A)

Smoke screen is cloud of smoke. It consists of fine particles of TiO_{2}.

Comprehension \# 4 (Q. No. 36 to 38)

Q. 36 (A)

AgI adsorbs Ag^{+}ion from excess $\mathrm{AgNO}_{3} \&$ forms $\mathrm{AgI} /$ $\mathrm{Ag}^{+}+\mathrm{ve}$ charge colloidal particle.
Q.. 37 (A)

Clouds are colloidal solution due to presence of liquid in gas.
Q. 38 (B)

Electrical chimneys are based on the principle of charged nature of smoke.

Comprehension \# 5 (Q. No. 39 to 41)

Q. 39 (D)

Gold no. $=0.025 \times 10^{3}=25$
It is the weight of starch in Mg required for protection.
Q. 40 (B,D)

Gold no. \propto protective power
Q. 41 (A)

Gold no. measures protective power of colloids.
Comprehension \# 6 (Q. No. 42 to 65)
Q. 42 (D)
$\Delta \mathrm{S}$ for micelles formations positive in nature as hydration energy released in hydration is more than the energy required for micelles formation.
Q. 43 (C)
$\mathrm{RCOO}^{-} \mathrm{Na}^{+}$soap.
Q. 44 (A)

Organic part i.e., RCOO^{-}dissolves grease
Q. 45 (B)

Refer theory
Q. 46 (A) grease (Like dissolves)
Q. 47 (A)-(P); (B)-(Q,R,S) ; (C)-(P,S) ; (D)-(P,Q)
Q. 48 (A)-(S) ; (B)-(R) ; (C)-(Q) ; (D)-(P)
(A) Coagulation is known as accmulation of collidal sols.
(B) Dialysis is purification of colloids.
(C) Peptization is formation of colloidal soluton from precipitates.
(D) Tyndall effect is scattering of light by colloidal particle
$\mathbf{Q .} 49$ (A)-(S);(B)-(R); (C)-(P) ;(D)-(Q)
Q. $50 \quad(\mathrm{~A})-(\mathrm{R}) ;(\mathrm{B})-(\mathrm{P}) ;(\mathrm{C})-(\mathrm{S}) ;(\mathrm{D})-(\mathrm{Q})$
(A) Mechanical property of colloid particle is known as Brownian movement.
(B) Purification of colloids is done by dialysis.
(C) Gold number $\propto \frac{1}{\text { protection power }}$
(D) Formation of a sol is done by peptization.
Q. 51 (A)-(S); (B)-(P); (C)-(R); (D)-(Q)

NUMER ICAL VALUE BASED

Q. 1 [1]

At very low pressure

$$
\frac{\mathrm{x}}{\mathrm{~m}} \propto \mathrm{P} ; \quad \frac{\mathrm{x}}{\mathrm{~m}}=\mathrm{KP}
$$

so $r=1$
Q. 2 [0]
Q. 3 [1]

Q. 4 [2]

Gold number is the mg of the protective colloid to be added to 10 ml of a standard gold sol which just prevents its coagulation when 1 ml of $10 \% \mathrm{NaCl}$ solution is added to it. Coagulation of 250 ml is prevented by $0.05 \mathrm{~g}=50 \mathrm{mg}$.Coagulation of 10 ml will be prevented by $50 / 250$ X $10 \mathrm{mg}=2 \mathrm{mg}$. Hence the gold number is 2 .
millimoles of $\mathrm{CH}_{3} \mathrm{COOH}$ in $100 \mathrm{ml}=100 \times 0.5=$ 50
millimoles of $\mathrm{CH}_{3} \mathrm{COOH}$ after adsorption $=0.49 \times$ $100=49$
so millimoles of acetic acid adsorbed $=1$
number of molecules of acetic acid adsorbed

$$
\begin{aligned}
& =1 \times 10^{-3} \times 6.02 \times 10^{23} \\
& =6.02 \times 10^{20}
\end{aligned}
$$

Total surface area of charcoal $=3.01 \times 10^{2} \mathrm{~m}^{2}$
Surface area adsorbed by each molecule of

$$
\begin{aligned}
\text { acetic acid } & =\frac{3.01 \times 10^{2}}{6.01 \times 10^{20}} \\
& =5 \times 10^{-19} \mathrm{~m}^{2}
\end{aligned}
$$

Hence answer is 5
Q. 6 [50.0]

Flocculation value of $\mathrm{NaCl}=5 \times 1$
$=5$ millimole for 100
ml
So for 1 litre value is 50 millimole.
Q. 7 [25.0]

For $10 \mathrm{ml}, 1 \mathrm{ml} 10 \% \mathrm{NaCl}$ is required so for 100 ml , $10 \mathrm{ml} 10 \% \mathrm{NaCl}$ will be required.
So gold number is 250 .
Q. 8 [5]

Let there are total n pores, then
Vol. of pores : $\mathrm{n}\left(\frac{1}{4} \pi \mathrm{~d}^{2} \ell\right)=0.1$ C.C
$\Rightarrow \mathrm{n}\left(\frac{\pi \mathrm{d}^{2} \ell}{4}\right)=10^{-7} \mathrm{~m}^{3}$
Area of pores : $\mathrm{n}(\pi \mathrm{d} \ell)=800 \mathrm{~m}^{2}$
By dividing equation (i) by (ii) we get -

$$
\mathrm{d}=\frac{4 \times 10^{-7}}{800} \mathrm{~m}=5 \AA
$$

Q. 9 [20]

It take two half-lives to reduce the concentration of reactant to 25% of its original concentration.

Hence, total time taken $=10+10$ $=20$ minutes

KVPY

PREVIOUS YEAR'S

Q. 1 (B)
$\frac{\text { Surface area }}{\text { Volume }}=\frac{\pi \mathrm{d}^{2}}{\frac{\pi \mathrm{~d}^{3}}{6}}=\frac{6}{\mathrm{~d}}$
$\mathrm{d}_{1}=30 \mathrm{~nm} \quad \mathrm{~d}_{2}=10 \mathrm{~nm}$
$\frac{\left(\frac{\text { Surface area }}{\text { Volume }}\right)_{2}}{\left(\frac{\text { Surface area }}{\text { Volume }}\right)_{1}}=\frac{\frac{6}{d_{2}}}{\frac{6}{d_{1}}}=\frac{d_{1}}{d_{2}}=\frac{30}{10}=3$
Q. 2 (D)

According to Lagmuir curve
$\mathrm{x}=\frac{\mathrm{ap}}{1+\mathrm{bp}}$
$\mathrm{p} \rightarrow \infty \quad \mathrm{x}=\frac{\mathrm{a}}{\mathrm{b}}$
$\mathrm{p} \rightarrow 0 \quad \mathrm{x} \propto \mathrm{p}$
Q. 3 (C)

Factually incorrect.
The initially adsorbed layer cannot act as a substrate for further adsorption.
Q. 4 (B)

JEE-MAIN

PREVIOUS YEAR’S
Q. 1 (1)
$\mathrm{FeCl}_{3} \xrightarrow{\text { Hydrolysis }} \mathrm{Fe}(\mathrm{OH})_{3} \downarrow \xrightarrow[\text { Adsorption }]{\mathrm{Fe}^{3+}}$
$\underset{\text { Colloidal particle }}{\mathrm{Fe}(\mathrm{OH})_{3} / \mathrm{Fe}^{3+}}$
Q. 2 (1)
$\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{kp}^{1 / \mathrm{n}}$
Q. 3 (2)

Moles of $\mathrm{O}_{2}=\frac{3.12}{32}=0.0975$
Volume of $\mathrm{O}_{2}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{0.0975 \times 0.082 \times 300}{1}=$ 2.3985 litres $\simeq 2.4$ litres

Volume of O_{2} adsorbed per gm of $\mathrm{Pt}=\frac{2.4}{1.2}=2$
Q. 4 (1)

The viscosity of the hydrophilic sols are much higher than that of the dispersion medium.
Q. 5 (3)
Q. 6 (1)

$$
\text { Slope }=\frac{1}{\mathrm{n}}(0 \text { to } 1)
$$

Q. 7 (2)

Blood is a negative charged Sol. Therefore according hardy-Schulz rule Fe^{+3} cation have highest coagulation power. Therefore FeCl_{3} can be used for clotting of blood efficiently.
Q. 8 (2)

To coagulate negative sol, cation with higher charge has higher coagulation value.
Q. 9 (3)

Colloid of gas dispersed in solid is called solid sol.

Q. 10 (2)

* Colloidel solution exhibits colligative properties
* An ordinary filter can not stop the flow of colloidal particles.
* Flocculating power increases with increase the opposite charge of electrolyte.
* Colloidal particles show brownian motion.
Q. 11 (4)

CdS sol \rightarrow-ve sol
TiO_{2} sol $\rightarrow+$ ve sol
Q. 12 [17]
Q. 13 (4)
Q. 14 (1)
Q. 15 (Bonus)
Q. 16 (1)
Q. 17 (1)
Q. 18 (3)
Q. 19 (4)
Q. 20 (3)
Q. 21 (4)
Q. 22 [128]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (A,B,D)

(A) $\Delta \mathrm{H}=-\mathrm{ve}$ for adsorption
(B) fact
(D) chemical bonds are stronger than vander waal's forces so chemical adsorption is more exothermic.

Q. 2 (A,D)

(A) due to preferential adsorption of common ions
(C) due to repulsion not due to attraction
(D) The layer of oppositely charged particles around any colloidal particles will decrease the potential energy of system as a whole.
Q. 3 (A,C)

In physisorption on increasing temperature at constant pressure, adsorption decreases while in chemical adsorption on increasing temperature due to requirement of activation energy adsorption will increase at same pressure. So, I is physisorption while II is chemisorption.
III is physical adsorption as on increasing temperature, extent of adsorption is decreasing .
IV is representing enthalpy change (which is high) during chemical adsorption (due to bond formation) So, is valid for chemical adsorption. So, answer is (A) and (C)
Q. 4 (B)

As the adsorption of methylene blue over activated characoal is physisorption (Reference : NCERT), it is accompanied by decrease in enthalpy.

Q. 5 (B,C,D)

(A) As electron transfer is involved, so chemisorption is taking place.
(B) Adsorption is exothermic process.
(C) The $\pi^{*}{ }_{2 p}$ orbitals of O_{2} accomodate the incoming electron as they are partially filled.
(D) As electron enters antibonding MO, bond length increases.
So, answer is (B,C,D).

Q. 6 (D)

Higher the water solubility, higher will be its surface tension.
Q. $7 \quad(\mathrm{~A}, \mathrm{C})$
\Rightarrow Higher the critical temperature, higher will be extent of adsorption.
\Rightarrow Cloud is an arosol, imulsions are liquid-liquid colloidal system.
\Rightarrow For adsorption $\Delta \mathrm{H} \Rightarrow$ negative $: \Delta \mathrm{S} \Rightarrow$ negative
\Rightarrow Brownian movement of colloidal particals depends on size of particles.
Q. 8 (B, C)
(A) Process of precipitating colloidal solution is called coagulation. Hence false.
(B) For colloidal solutions concentration is very small due to very large molar mass and hence their colligative properties are very small as compared to true solutions
$\therefore \mathrm{T}_{\mathrm{f}}$ is lesser for colloidal solution. Hence true.
(C) At CMC surfactant form micelles. Hence true
(D) Micelles and macromolecular colloids are two different types of colloids. Hence false.

Chemical Kinetics

EXERCISES

ELEMENTARY

Q. 1 (2) $\mathrm{R}=\mathrm{K}[\mathrm{RCl}]$, if $[R C l]=1 / 2$, then rate $=R / 2$.
Q. 2
(3) $k=\frac{2.303}{t} \log _{10} \frac{a}{a-x}$
$t=2 \times 10^{2}, a=800, a-x=50$
$\mathrm{k}=\frac{2.303}{2 \times 10^{2}} \log _{10} \frac{800}{50}=\frac{2.303}{2 \times 10^{2}} \log _{10} 16$
$=\frac{2.303}{2 \times 10^{2}} \log _{10} 2^{4}=\frac{2.303}{2 \times 10^{4}} \times 4 \times 0.301$

$$
=1.38 \times 10^{-2} \mathrm{~s}^{-1}
$$

Q. 3 (4) Increase in the rate of reaction is determined by the increase in the number of effective collisions.
Q. 4 (1)
Q. 5 (1)
Q. 6 (4)
Q. 7 (4)
Q. 8 (2)
Q. 9 (1)
Q. 10 (3)
Q. 11 (2)
Q. 12 (3)
Q. 13 (1)
Q. 14 (1)
Q. 15 (1)
Q. 16 (1)
Q. 17 (3)
Q. 18 (2)
Q. 19 (1)
Q. 20 (3)
Q. 21 (1)
Q. 22 (2)
Q. 23 (4)
Q. 24 (1)
Q. 25 (4)
Q. 26 (1)

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (3)
$\mathrm{xA}+\mathrm{yB} \longrightarrow \mathrm{zC}$

$$
\begin{aligned}
& \frac{-d}{d t}[A]=\frac{-d}{d t}[B]=1.5 \frac{-d}{d t}[C] \\
& \Rightarrow \frac{-1}{3} \frac{-d}{d t}[A]=\frac{-1}{3} \frac{-d}{d t}[B]=\frac{1}{2} \frac{-d}{d t}[C] \\
& x=3 \quad y=3 \quad z=2
\end{aligned}
$$

Q. 2 (2)

$$
\begin{aligned}
& x A \longrightarrow Y B \\
& \frac{-1}{x} \frac{d}{d t}[A]=\frac{1}{y} \frac{d}{d t}[B] \\
& \Rightarrow \frac{-d}{d t}[A]=\frac{x}{y} \frac{d}{d t}[B] \\
& \quad \log \left(\frac{-d[A]}{d t}\right)=\log \left(\frac{x}{y}\right)\left(\frac{+d[B]}{d t}\right) \\
& \Rightarrow \log \frac{-d}{d t}[A]=\log \frac{d}{d t}[B]+\log \left(\frac{x}{y}\right) \\
& \log \left(\frac{x}{y}\right)=0.3
\end{aligned}
$$

$$
\Rightarrow \frac{x}{y}=\frac{2}{1}
$$

$$
\Rightarrow x: y 2: 1
$$

Q. 3 (4)

slope of graph at $20 \mathrm{sec}=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{0.35}{50}=7 \times 10^{-3}$
Q. 4 (2)
$-\frac{1}{3} \frac{\mathrm{~d}[\mathrm{D}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}=\frac{1}{4} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}$
$\mathrm{B}+3 \mathrm{D} \longrightarrow 2 \mathrm{C}+4 \mathrm{~A}$
$\mathrm{B}+3 \mathrm{D} \longrightarrow 4 \mathrm{~A}+2 \mathrm{C}$
Q. 5 (4)
$\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{f}}==1.5 \times 10^{-3} \mathrm{~s}^{-1}$
At eq. ${ }^{m}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{b}}$
$\mathrm{K}_{\mathrm{f}}[\mathrm{A}]=\mathrm{K}_{\mathrm{b}}[\mathrm{B}]^{2}$
On solving : $\mathrm{K}_{\mathrm{b}}=1.5 \times 10^{-11}$

Q. 6 (2)

From the above data, it is clear that on doubling the concentration of B , the rate is doubled hence order w.r.t. B is 1

Similarly, Order w.r.t. A=2
\Rightarrow rate $=\mathrm{K}[\mathrm{A}]^{2}[\mathrm{~B}]$
Q. 7 (4)
$\mathrm{A}+2 \mathrm{~B} \longrightarrow 3 \mathrm{C}+\mathrm{D}$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}=\frac{1}{3} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}}$
Q. 8 (2)
$\mathrm{aA}+\mathrm{bB} \longrightarrow$ Product
$\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}[\mathrm{A}]^{\mathrm{a}}[B]^{\mathrm{b}}$
(i) As on doubling concentration of A rate become four time so $\mathrm{a}=2$.
(ii) On four time concentration of B rate become double so $\mathrm{b}=\frac{1}{2}$.
So, Given equation :
$2 \mathrm{a}+\frac{1}{2} \mathrm{~b} \longrightarrow$ Product
$-\frac{1}{2} \frac{d[A]}{d t}=-2 \frac{d[B]}{d t}$
$-\frac{d[A]}{d t}=-4 \frac{d[B]}{d t}$
Q. 9 (2)

$$
\begin{aligned}
& 2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \text { Rate }=-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{NO}]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{~N}_{2}\right]}{\mathrm{dt}}= \\
& \frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{H}_{2} \mathrm{O}\right]}{\mathrm{dt}}=\mathrm{K}_{1}[\mathrm{NO}]\left[\mathrm{H}_{2}\right] \\
& \text { (1) } \frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{O}\right]}{\mathrm{dt}}=2 \mathrm{~K}_{1}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]=\mathrm{K}[\mathrm{NO}]\left[\mathrm{H}_{2}\right] \\
& \text { So } \quad \mathrm{k}=2 \mathrm{k}_{1}
\end{aligned}
$$

$$
\text { (2) }-\frac{\mathrm{d}[\mathrm{NO}]}{\mathrm{dt}}=2 \mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]=\mathrm{K}_{1}^{\prime}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]
$$

$$
\mathrm{k}_{1}{ }^{\prime}=2 \mathrm{k}_{1}
$$

$$
\text { (3)- } \frac{\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=2 \mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]=\mathrm{K}_{1}^{\prime \prime}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]
$$

Rate law for

$$
\mathrm{k}_{1}{ }^{\prime \prime}=2 \mathrm{~K}_{1}
$$

Q. 10 (3)

Order have no relation with stoichiometric coefficient.

Q. 11 (4)

By definition of order.

Q. 12 (4)

Rate law for Ist order Ind order IIIrd order
Rate $=K[A]^{1} R_{2}=K[A]^{2} \quad R_{3}=K[A]^{3}$
than we can say $[\mathrm{A}]=1 \quad \mathrm{r}_{1}=\mathrm{r}_{2}=\mathrm{r}_{3} \quad[\mathrm{~A}]<1$ then $r_{1}>r_{2}>r_{3}$
y $\quad[A]>1$ then $r_{3}>r_{2}>r_{1}$
Q. $13 \quad$ (4)
$-\frac{\mathrm{d}\left[\mathrm{BrO}_{3}^{-}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
So, on doubling the concentration of H^{+}ion will increase the reaction rate by 4 times.
Q. 14 (1)
$\mathrm{A}+\mathrm{B} \longrightarrow$ product
$\mathrm{r}=\mathrm{K}[\mathrm{A}]^{1}[\mathrm{~B}]^{2}$
$\mathrm{r}_{1}=\mathrm{K}[1]^{1}[1]^{2}=1 \times 10^{-2}\left(\mathrm{~K}=1 \times 10^{-2}\right)$
$\mathrm{r}_{1}=\mathrm{K}\left[\frac{1}{2}\right]\left[\frac{1}{2}\right]^{2}=1 \times 10^{-2} \times \frac{1}{8}=1.25 \times 10^{-3}$
Q. 15 (2)

Rate $\alpha \frac{1}{\text { time }}$

Since,
Rate becomes four times by doubling the concentration of A
\Rightarrow Order w.r.t A is 2
Also, by doubling the concentration of B , the rate becomes double
\Rightarrow Order w.r.t. B is 1 .

Q. 16 (2)

$-\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
$\Rightarrow-\frac{\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=\frac{3}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}$
$=\frac{3}{2} \times 3.4=5.1 \mathrm{Kgmin}^{-1}$

Q. 17 (4)

Given $\frac{d x}{d t}=k[A]^{a}[B]^{b}$ and if $\frac{d x}{d t}=k$
then $\mathrm{a}+\mathrm{b}=0$ i.e. zero order reaction.
Q. 18 (4)
$2 \mathrm{~A}+3 \mathrm{~B} \rightarrow$ product
A in Excess then Rate law
Rate $=\mathrm{K}[\mathrm{B}]^{\mathrm{n}}$ given

$$
\text { Rate }_{1}=K[0.1]^{\mathrm{n}}
$$

given Rate $_{2}=2$ Rate $_{1}=K[0.4]^{n}$

From (1) and (2) $n=\frac{1}{2}$
then Rate law $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{K}[\mathrm{B}]^{\frac{1}{2}}$
Q. 19 (3)
$\mathrm{A} \rightarrow \mathrm{nB}$
$\mathrm{A}_{0} \quad 0$
$\mathrm{A}_{0}-\mathrm{x} \quad \mathrm{nx}$
$\mathrm{nx}=\mathrm{A}_{0}-\mathrm{x}$
$x=\frac{A_{0}}{n+1}$
$\therefore[B]=n x=\frac{n A_{0}}{n+1}$
Q. 20 (4)

Complex reaction order of reaction depends on rate determining step (RDS) x Y y are not related to a \& b.

Q. 21 (2)

$\frac{d c}{d t}=\left(\frac{d n}{d t}\right) \times \frac{1}{V}$
$\mathrm{c}=\frac{\mathrm{n}}{\mathrm{V}}=\frac{\mathrm{P}}{\mathrm{RT}}$
Q. 22 (3)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
$\mathrm{r}=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}$
Molecularity \rightarrow not defined.
order $=1+\frac{1}{2}=\frac{3}{2}$.
Q. 23 (4)

Number of molecules of CO involved in slowest step will be 0 .
Q. 24 (2)
$\left(\frac{d x}{d t}\right)=k[A]^{2}[B]^{-1}-\mathrm{K}_{2}[\mathrm{C}]$
net rate is $\quad 2 \mathrm{~A}-\mathrm{B} \rightleftharpoons \mathrm{C}$.
Q. 25 (2)
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$
$\mathrm{k}=2.303 \times 10^{-3} \mathrm{sec}^{-1}$
$\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{1}{0.25}=\frac{2.303}{2.303 \times 10^{-3}} \log \frac{100}{25}$
$=10^{3} \times(0.605)=600 \mathrm{sec}$
Q. 26 (4)
$k_{1}=\frac{2.303}{t} \log \frac{100}{50}=\frac{2.303}{t} \log 2=\frac{0.6955}{t}$
$k_{2}=\frac{2.303}{t} 2 \log 5=\frac{2.303}{t} \times 2 \times 0.69=\frac{3.22}{t}$
$\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=4.65$
Q. 27 (1)
$\mathrm{sec}^{-1}, \mathrm{Msec}^{-1}$
Q. 28 (2)
$\mathrm{t}=\frac{2.303}{\mathrm{~K}} \log \frac{\mathrm{C}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{t}}}$
$\Rightarrow \mathrm{t}=\frac{2.303}{\mathrm{~K}}\left[\log \mathrm{C}_{\mathrm{o}}-\log \mathrm{C}_{\mathrm{t}}\right]$
$\frac{\mathrm{Kt}}{2.303}=\log \mathrm{C}_{\mathrm{o}}-\log \mathrm{C}_{\mathrm{t}}$
$\Rightarrow \log \mathrm{C}_{\mathrm{t}}=\left(\frac{-\mathrm{K}}{2.303}\right) \mathrm{t}+\log \mathrm{C}_{\mathrm{O}}$
So, slope $=\left(\frac{-K}{2.303}\right)$
Q. 29 (2)

Equal amount of Rxn completed in equal time property as zero order Rxn, and unit as Rate constant mole Litre $^{-1} \sec ^{-1}$
Q. $30 \quad$ (2)

No. of half life $=\frac{60}{10}=6$ half life.
$C_{t}=\frac{C_{0}}{(2)^{n}}=\frac{C_{0}}{(2)^{6}}=\left(\frac{C_{0}}{64}\right)$
$k=\frac{2.303}{t} \log \left(\frac{100}{100-x \%}\right)$
$\frac{k_{1}}{k_{2}}=\left(\frac{t_{2}}{t_{1}}\right) \frac{\log \left(\frac{100}{10}\right)}{\log \left(\frac{100}{1}\right)}$
$\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=2 \frac{\log 10}{2 \log 10}=1$.
Q. 31 (2)
$\mathrm{t}_{1 / 2}=10$
No. of Half life $=\frac{60}{10}=6$ half life
$C_{t}=\frac{C_{O}}{(2)^{n}}=\frac{C_{O}}{(2)^{6}}=\left(\frac{C_{O}}{64}\right)$
Q. 32 (2)
$K=\frac{2.303}{t} \log \frac{a}{a-x}$
$K=\frac{2.303}{20} \log \frac{1}{0.6}$
Also,
$K=\frac{2.303}{t} \log \frac{0.60}{0.36}$
Since, Rate constant will be equal

$$
\frac{2.303}{20} \log \frac{1}{0.6}=\frac{2.303}{t} \log \frac{0.60}{0.36}
$$

On solving, $\mathrm{t}=20 \mathrm{~min}$

Q. 33 (3)

For a first order reaction, the concentration of the reactant varies exponentially with time

$$
\left(\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\mathrm{kt}}\right)
$$

Q. 34 (1)
$(1) \xrightarrow{\mathrm{K}_{1}}$ Product
$(2) \xrightarrow{\mathrm{K}_{2}}$ Product
$K_{1}=\frac{2.303}{t} \log \left(\frac{100}{10}\right)$
$\mathrm{K}_{2}=\frac{2.303}{2 \mathrm{t}} \log \left(\frac{100}{1}\right)$
then from (1) and (2)

$$
\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=1
$$

Q. 35 (2)
$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$
According to question
$\mathrm{C}_{\mathrm{A}},{ }_{\mathrm{t}}=\mathrm{C}_{\mathrm{B}}$, ${ }_{\mathrm{t}}$
$C_{A} e^{-K_{A} t}=C_{B} e^{-K_{B} t}$
$\frac{C_{A}}{C_{B}}=\frac{e^{-K_{B} t}}{e^{-K_{A} t}} \Rightarrow \frac{C_{A}}{C_{B}}=e^{\left(K_{A}-K_{B}\right) t}$
$4=e^{\left[\frac{\ln 2}{5}-\frac{\ln 2}{15}\right] \times t}$
$\ln 4=\left[\frac{\ln 2}{5}-\frac{\ln 2}{15}\right] \mathrm{t}$
$\ln (2)^{2}=\left[\frac{\ln 2}{5}-\frac{\ln 2}{15}\right] \mathrm{t}$
$2 \ln 2=\left[\frac{\ln 2}{5}-\frac{\ln 2}{15}\right] \mathrm{t}$
$2=\left[\frac{1}{5}-\frac{1}{15}\right] t$
$2=\frac{2}{15} \times \mathrm{t}$
$\mathrm{t}=15$ minute.
Q. 36 (3)
$\mathrm{t}_{1}=\frac{2.303}{\mathrm{~K}} \log \left(\frac{100}{40}\right)$
$\mathrm{t}_{2}=\frac{2.303}{\mathrm{~K}} \log \left(\frac{100}{80}\right)$
From (1) and (2) $\frac{t_{1}}{t_{2}}=4.11$
Q. 37 (3)
$\mathrm{K}_{1}=\frac{1}{\mathrm{t}} \ln \left(\frac{\mathrm{C}_{\mathrm{O}}}{\mathrm{aC}_{\mathrm{O}}}\right)=\frac{1}{\mathrm{t}} \ln \left(\frac{1}{\mathrm{a}}\right)$
$K_{2}=\frac{1}{2 t}\left(\frac{C_{O}}{a^{2} C_{0}}\right)=\frac{1}{t} \ln \left(\frac{1}{a}\right)$
Q. 38 (3)
Q. 39 (3)

Reaction is or zero order hence, Option C will be correct.
Q. 40 (3)
$\mathrm{t}_{1 / 4}=$ time taken for $\frac{1}{4}^{\text {th }}$ decomposition.
$\Rightarrow \frac{3}{4}^{\text {th }}$ will be left
$t_{1 / 4}=\frac{2.303}{K} \log \frac{1}{3 / 4}=\frac{2.303}{K} \log \frac{4}{3}$

Q. 41 (3)

If we calculate K, it comes constant every time i.e. reaction is of first order.

Also, $\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{C}_{0}}{\mathrm{aC}_{0}}=\frac{1}{\mathrm{t}} \ln \left(\frac{1}{\mathrm{a}}\right)$
Q. 42 (2)
$\mathrm{Ph}-\mathrm{N}_{2} \mathrm{Cl} \xrightarrow{\Delta / \mathrm{Cu}} \mathrm{Ph}-\mathrm{Cl}+\mathrm{N}_{2}$
Half life is independent of concentration
\Rightarrow reaction is of first order

$$
\mathrm{Ph}-\mathrm{N}_{2} \mathrm{Cl} \rightarrow \mathrm{PhCl}+\mathrm{N}_{2}
$$

$$
\mathrm{t}=0 \mathrm{~A}_{0} \quad 0
$$

0
$\mathrm{t}=30 \quad \mathrm{~A}_{0}-\mathrm{x}$
$\mathrm{X} \quad \mathrm{X}$
$\mathrm{t}=\infty 0$
$\mathrm{A}_{0} \mathrm{~A}_{0}$
$\mathrm{x} \propto 10$
$A_{0} \propto 50$
$\Rightarrow \mathrm{A}_{0}-\mathrm{x} \quad \alpha 40$
$K=\frac{2.303}{t} \log \frac{A_{0}}{A_{0}-x}=\frac{2.303}{10} \log \frac{50}{40}$
$=\frac{2.303}{10} \log (1.25) \mathrm{min}^{-1}$
Q. 43 (4)

$$
\begin{array}{lllll}
& 2 \mathrm{~A} & +\mathrm{B} & \mathrm{k} & \mathrm{C}+ \\
\mathrm{t}=0 & \mathrm{C}_{0} & 2 \mathrm{C}_{0} \\
\mathrm{t}=30 & \mathrm{C}_{0}-2 \mathrm{x} & 2 \mathrm{C}_{0}-\mathrm{x} & & 0 \\
\\
& & & 0 \\
& \text { given, } & & x & \mathrm{x}=\frac{C_{0}}{4}
\end{array}
$$

After $30 \mathrm{~min},[\mathrm{~A}]=\mathrm{C}_{0}-2 \times \frac{\mathrm{C}_{0}}{4}=\frac{\mathrm{C}_{0}}{2}$
$[B]=2 C_{0}-\frac{C_{0}}{4}=\frac{7 C_{0}}{4}$
$r=K\left[\frac{C_{0}}{2}\right]\left[\frac{7 C_{0}}{4}\right]$
$\Rightarrow \mathrm{R}=\frac{49 \mathrm{kC}_{0}^{3}}{32}$

Q. 44 (3)

From given graph $\mathrm{x}=\mathrm{Kt}$
i.e. it is a zero order reaction.
$\therefore-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{K}$

Q. 45 (3)

As $\mathrm{t}_{50 \%}$ is constant. Hence order of reaction is 1 .
$\mathrm{t}_{50 \%}=\frac{0.693}{\mathrm{~K}}$
$\mathrm{n}=1, \mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}$

Q. 46 (1)

by graph we can say $\log \mathrm{t}_{1 / 2}=\log \mathrm{a} \mathrm{t}_{1 / 2}=\mathrm{a}$
$t_{1 / 2} \propto$ a then zero order Rxn $\quad k \times t_{1 / 2}=\frac{a}{2}$
then $\mathrm{k}=\frac{1}{2}$

Q. 47 (3)

time Total for drop to disappears $\left(a_{o}-a_{t}\right)=k t$
$\mathrm{a}_{\mathrm{t}}=0$
$\frac{3.0 \times 10^{-6}}{\left(0.05 \times 10^{-3}\right) \times 1.0 \times 10^{7}}=\mathrm{t}_{100 \%}$
$\Rightarrow \mathrm{t}_{100 \%_{0}}=6 \times 10^{-9} \mathrm{sec}$
Q. 48 (1)
$\mathrm{t}_{1}=\frac{2.303}{3 \mathrm{~K}} \log \frac{100}{75}$
$\mathrm{t}_{2}=\frac{2.303}{2 \mathrm{~K}} \log \frac{100}{25}$
$\Rightarrow \frac{t_{1}}{t_{2}}=\frac{0.311}{1}=0.311: 1$
Q. 49 (4)

a
$a-x$
Since equal interval of time equal conc. decreased then reaction zero order
Rate $=\frac{\Delta \mathrm{A}}{\Delta \mathrm{t}}=\frac{20-12}{20}=\frac{8}{20}=0.4$.
Q. 50 (1)
$2 \mathrm{~A}(\mathrm{~g}) \longrightarrow 3 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$\mathrm{t}=0 \quad \mathrm{P}^{0} \quad 0 \quad 0$
$\mathrm{t}=3$ hour $\left(\mathrm{P}^{0}-\mathrm{x}\right) \quad \frac{3 \mathrm{x}}{2} \quad\left(\frac{\mathrm{x}}{2}\right)$
$\left(\mathrm{P}^{0}+\mathrm{x}\right)=2 \mathrm{P}^{0}$
$\mathrm{x}=\mathrm{P}^{0}$
Reaction is completed in limited time so reaction is zero order reaction.

Q. 51 (2)

At low $\mathrm{C}_{\mathrm{A}}=\frac{-\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{K}_{\mathrm{f}} \mathrm{C}_{\mathrm{A}}$
Q. 52 (3)
Q. 53 (1)

Rate $=\mathrm{k}$ (conc.) order here k depends on temperature.
Q. 54 (2)

No. of half lives $=\frac{18}{3}=6$

The mass remaining undecayed $=\frac{256}{2^{6}}=4 \mathrm{gm}$
Q. 55 (3)

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}[\mathrm{~A}]^{2}
$$

$\log \left(\frac{d x}{d t}\right)=\log k+2 \log [A]$

Slope $=2$
Intercept $=\log \mathrm{k}$.
Q. $56 \quad$ (1)
$2 \mathrm{~A} \underset{\mathrm{~K}_{-1}}{\stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}} \mathrm{~B}+3 \mathrm{C}$
$2 \mathrm{C} \xrightarrow{\mathrm{k}_{2}} 3 \mathrm{D}$
$\frac{1}{3} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{~A}]^{2}-\mathrm{k}_{-1}[\mathrm{~B}][\mathrm{C}]^{3}$
$\Rightarrow \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=3 \mathrm{~K}_{1}[\mathrm{~A}]^{2}-3 \mathrm{~K}_{-1}[\mathrm{~B}][\mathrm{C}]^{3}$
from $2^{\text {nd }}$ reaction
$-\frac{1}{2} \frac{d C}{d t}=K_{2}[C]^{2}$
$\Rightarrow \frac{\mathrm{dC}}{\mathrm{dt}}=-2 \mathrm{~K}_{2}[\mathrm{C}]^{2}$
From (I) \& (II)

$$
\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=3 \mathrm{~K}_{1}[\mathrm{~A}]^{2}-3 \mathrm{~K}_{-1}[\mathrm{~B}][\mathrm{C}]^{3}-2 \mathrm{~K}_{2}[\mathrm{C}]^{2}
$$

Q. 57 (4)

$$
\begin{aligned}
& t_{1 / 2} \alpha\left(\frac{1}{a}\right)^{n-1} \\
& \Rightarrow t_{1 / 2} \alpha(1)^{1-n} \\
& \Rightarrow \frac{\left(t_{1 / 2}\right)_{1}}{\left(t_{1 / 2}\right)_{2}}=\frac{a_{1}}{a_{2}}
\end{aligned}
$$

$$
\Rightarrow \frac{235}{950}=\left(\frac{500}{250}\right)^{1-n}
$$

$$
\Rightarrow \log 23.5-\log 95=(1-n) \log 2
$$

$$
\Rightarrow \mathrm{n}=3
$$

Q. 58 (2)

$\mathrm{t}_{1 / 2}=20 \mathrm{~min}$	at 300 K
$\mathrm{t}_{1 / 2}^{\prime}=5 \mathrm{~min}$	at 320 K
$\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~A} \cdot \mathrm{e}^{\frac{-\mathrm{Ea}}{300 \mathrm{R}}}=20}$	

$$
\begin{align*}
& \mathrm{t}^{\prime}{ }_{1 / 2}=\frac{0.693}{A \cdot e^{\frac{-E a}{320 R}}}=5 \\
& \frac{t_{1 / 2}}{t^{\prime} 1 / 2}=4=\frac{e^{\frac{-E a}{320 R}}}{e^{\frac{-E a}{300 R}}} \\
& 4=e^{\frac{\mathrm{Ea}}{\mathrm{R}}\left(\frac{1}{300}-\frac{1}{320}\right)} \\
& \ln 4=\frac{\mathrm{Ea}}{\mathrm{R}}\left(\frac{20}{300 \times 320}\right) \\
& \text { On solving, Ea }=55303.12 \mathrm{~J} \\
& =55.3 \mathrm{KJ} \\
& \text { On solving, Ea }=55303.12 \mathrm{~J} \\
& \text { Q. } 59 \text { (4) } \\
& 2 \mathrm{~A} \rightarrow \mathrm{~B}+3 \mathrm{C} \\
& \mathrm{t}=0 \quad \mathrm{P}_{0} \quad 0 \quad 0 \\
& \mathrm{t}=10 \quad \mathrm{P}_{0}-2 \mathrm{p}^{1} \quad \mathrm{p}^{1} \quad 3 \mathrm{p}^{1} \\
& p_{0}-2 p^{1}=200 \tag{1}\\
& \text { (I) }+ \text { (II) } 2 \mathrm{p}_{0}=500 \Rightarrow \mathrm{p}_{0}=250 \tag{2}\\
& \text { Pressure of A After } 10 \mathrm{~min} \\
& =\mathrm{p}_{0}-\mathrm{p}^{1}=200 \\
& K=\frac{1}{2 \times 10} \ln \frac{250}{200} \\
& K=\frac{1}{2 \times 10} \ln 1.25 \\
& \Rightarrow \text { None is correct } \\
& \mathrm{t}_{1 / 2}=\left(\frac{2-\sqrt{2}}{\mathrm{~K}}\right) \times \mathrm{C}_{0}^{1 / 2} \\
& \Rightarrow \mathrm{t}_{1 / 2} \alpha \mathrm{C}_{0}^{1 / 2} \\
& \text { Also, } \mathrm{t}_{1 / 2} \alpha \mathrm{C}_{0}{ }^{1-\mathrm{n}} \text { (where } \mathrm{n} \text { is the order of reaction) } \\
& \Rightarrow 1-\mathrm{n}=1 / 2 \Rightarrow \mathrm{n}=0.5
\end{align*}
$$

$$
x=3
$$

Q. 62 (2)

$$
\begin{aligned}
& y=\frac{\log \frac{r_{1}}{r_{3}}}{\log \left(\frac{b_{1}}{b_{2}}\right)}=\frac{\log \left(\frac{0.1}{0.1}\right)}{\log \left(\frac{0.035}{0.070}\right)}=\frac{\log (1)}{\log \left(\frac{1}{2}\right)} \\
& y=0
\end{aligned}
$$

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})
$$

$\mathrm{t}=0$	$2 \mathrm{P}_{\mathrm{o}}$	P_{o}	$2 \mathrm{P}_{\mathrm{o}}+\mathrm{P}_{\mathrm{o}}=3 \mathrm{~atm}$
$\mathrm{t}=0$	2 atm	1 atm	$0 \quad \mathrm{P}_{\mathrm{o}}=1 \mathrm{~atm}$
$\mathrm{t}=\mathrm{t}$	0	0	2 atm

Q. 61 (2)

Let $\mathrm{r}=(1)^{\mathrm{x}}(2)^{\mathrm{y}}$

$$
x=\frac{\log \left(\frac{r_{1}}{r_{2}}\right)}{\log \left(\frac{a_{1}}{a_{2}}\right)}=\frac{\log \frac{0.1}{0.1}}{\log \left(\frac{0.012}{0.024}\right)}=\frac{\log \left(\frac{1}{8}\right)}{\log \left(\frac{1}{2}\right)}
$$

 Q. 63 (2)

$$
\begin{array}{lll}
\mathrm{A}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{B}(\mathrm{~g})+\frac{1}{2} \mathrm{C}(\mathrm{~g}) \\
\mathrm{t}=0 \quad 100 \mathrm{~mm} & 0 & 0 \\
\mathrm{t}=5 \mathrm{~mm}(100-\mathrm{x}) & \mathrm{x} & \frac{\mathrm{x}}{2}
\end{array}
$$

Total pressure $100-\mathrm{x}+\mathrm{x}+\frac{\mathrm{x}}{2}=120 \quad(\mathrm{x}=40)$
then Rate of disappearance of $\mathrm{A}_{2}=-\frac{\mathrm{d}\left[\mathrm{A}_{2}\right]}{\mathrm{dt}}=\frac{40}{5}=$
8
Q. 64 (3)

Given $\mathrm{k}_{\mathrm{app}}=\frac{\mathrm{k}_{1} \mathrm{C}}{1+\alpha \mathrm{C}}=\frac{\mathrm{k}_{1}}{1 / \mathrm{C}+\alpha}(\mathrm{C} \rightarrow \infty)$
$\therefore \mathrm{k}_{\text {app }}=\frac{\mathrm{k}_{1}}{\alpha}$
Put this value in given equation
$\frac{\mathrm{k}_{1}}{\alpha}=\frac{\mathrm{k}_{1} \mathrm{C}}{1+\alpha \mathrm{C}}$
$\frac{\mathrm{k}_{1} \times 90}{\alpha \times 100}=\frac{\mathrm{k}_{1} \mathrm{C}}{1+\alpha \mathrm{C}}$
Put the value of α in this equation we get $\mathrm{C}=10^{-5} \mathrm{~mole} / \mathrm{litre}$.
Q. 65 (2)
$\mathrm{NH}_{4} \mathrm{NO}_{2}(\mathrm{aq}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$
$K=\frac{2.303}{\mathrm{t}} \log \left(\frac{\mathrm{V}_{\infty}-\mathrm{V}_{\mathrm{O}}}{\mathrm{V}_{\infty}-\mathrm{V}_{\mathrm{t}}}\right)$

$$
\begin{aligned}
& \Rightarrow V_{0}=0 \\
& \Rightarrow K=\frac{2.303}{20} \log \left(\frac{70-0}{70-40}\right) \\
& =\frac{2.303}{20} \log \left(\frac{70}{30}\right) \\
& \Rightarrow K=\frac{2.303}{1200} \log \frac{7}{3}
\end{aligned}
$$

Q. 66 (3)

$2 \mathrm{~A} \xrightarrow{\mathrm{~K}_{1}} \mathrm{~B} \xrightarrow{\mathrm{~K}_{2}} 3 \mathrm{C} . \mathrm{K}_{1}=2 \times 10^{-4} \mathrm{sec}^{-1}$,
$\mathrm{K}_{2}=3 \times 10^{-4} \mathrm{~L} / \mathrm{mol}$-sec.
From the unit of rate constant for the given sequential reactions, it is clear that first reaction is of first order \& the second reaction is of second order.
Hence, rate law is given as
Rate $=\mathrm{K}_{1}[\mathrm{~A}]-\mathrm{K}_{2}[\mathrm{~B}]^{2}$

Q. 67 (3)

mole/L-sec $=\left[\mathrm{K}_{1}\right][\mathrm{M} / \mathrm{L}]^{3}$
$\left[\mathrm{K}_{1}\right]=\mathrm{L}^{2} \mathrm{M}^{-2} \mathrm{sec}^{-1}$
$\mathrm{ML}^{-1} \sec ^{-1}=\left[\mathrm{K}_{2}\right][\mathrm{M} / \mathrm{L}]$
$\left[\mathrm{K}_{2}\right]=\sec ^{-1}$

Q. 68 (2)

In given sequence of $R x n \quad \frac{d[c]}{d t}=k_{2}[B]-K_{3}[C]$

Q. 69 (3)

$\mathrm{N}_{10}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}=\mathrm{N}_{0} \mathrm{e}^{-10 \lambda}$
$\mathrm{N}_{11}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}=\mathrm{N}_{0} \mathrm{e}^{-11 \lambda}$
No. of atoms decaylyed during eleventh day
$=\mathrm{N}_{10}-\mathrm{N}_{11}$
$=0.1 \times \mathrm{N}_{\mathrm{A}}\left[\mathrm{e}^{-10 \lambda}-\mathrm{e}^{-11 \lambda}\right]$
Where, $\lambda=\frac{0.693}{5}$ per day
Q. 70 (2)
$\left(\frac{d x}{d t}\right)=k_{1}[A]^{2}[B]^{1}-k_{2}[C]$
net rate is

$$
2 \mathrm{~A}+\mathrm{B} \rightleftharpoons \mathrm{C}
$$

Q. 71 (2)

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}
$$

$\left[\frac{\mathrm{dx}}{\mathrm{dt}}\right]=0$
$\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]-\mathrm{k}_{2}[\mathrm{C}][\mathrm{D}]=0$
$\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]=\mathrm{k}_{2}[\mathrm{C}][\mathrm{D}]$
[A] [B] $=[\mathrm{C}][\mathrm{D}]$
$0.4 \times 0.25=0.2 \times 0.5$
$1=1$.
Q. 72 (2)
$\%$ of $B=\frac{k_{1} \times 100}{k_{1}+k_{2}}=\frac{1.26 \times 10^{-4} \times 100}{12.6 \times 10^{-5}+3 \times 10^{-5}}=76.83 \%$.
$\%$ of $C=\frac{k_{2} \times 100}{k_{1}+k_{2}}=\frac{3 \times 10^{-5} \times 100}{12.6 \times 10^{-5}+3 \times 10^{-5}}=23.18 \%$.
Q. 73 (2)
we know $\mathrm{E}_{\mathrm{a}}=\frac{E a_{1} \times \mathrm{K}_{1}+E a_{2} \times \mathrm{K}_{2}}{\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)}$
$=\frac{\left[1.0 \times 10^{-2} \times 60+3 \times 10^{-2} \times 70\right]}{\left[1.0 \times 10^{-2}+3.0 \times 10^{-2}\right]}$
$\mathrm{Ea}=67.5 \mathrm{kj} / \mathrm{mole}$
Q. 74 (3)

A \rightarrow B $+C$
$e^{\frac{-\mathrm{Ea}}{\mathrm{RT}}}=\frac{3.8 \times 10^{-16}}{100}$
$\frac{-E a}{R T}=2.303 \log \left(3.8 \times 10^{-18}\right)$
$\mathrm{Ea}=100 \mathrm{KJ} / \mathrm{mol}$
Q. 75 (2)

At temperature $=\infty$
Rate constant $=$ Arrhenious constant.
Q. 76 (4)
$\mathrm{A} \underset{\text { B.R. }}{\stackrel{\text { F.R. }}{\rightleftharpoons}} \mathrm{B}+$ heat
$\mathrm{E}_{\mathrm{af}}=100 \mathrm{KJ} / \mathrm{mol}$
$\mathrm{E}_{\mathrm{ab}}=$?
heat of reaction $=$?

Only one option because $\mathrm{E}_{\mathrm{b}}=\mathrm{E}_{\mathrm{a}}+\Delta$ H.O. reaction
Q. 77 (1)

In a reaction, the threshold energy is equal to : Activation energy + Normal energy of reactants.
Q. 78 (1)
$\log K=15-\frac{10^{6}}{T}$
$\log \mathrm{A}=15 \Rightarrow \mathrm{~A}=10^{15}$
$\mathrm{Ea}($ Backward $)=\mathrm{A}+\mathrm{B}$
Q. 81 (4)
$\mathrm{R}_{\mathrm{T}+10}^{\mathrm{I}}=2 \mathrm{R}_{\mathrm{T}}^{\mathrm{I}}$
$\mathrm{R}_{\mathrm{T}+10}^{\mathrm{II}}=2 \mathrm{R}_{\mathrm{T}}^{\mathrm{II}}$

$$
\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\left(\frac{3}{2 \mathrm{a}}\right)^{5}=7.6
$$

Q. 82 (1)
Q. 83 (1)

Rate of reaction increases with increase of temperature whether it is endothermic or exothermic.

Q. 84 (2)

By using maxwell's velocity distribution curve the rise in temperature, increases the activated molecules to form the product therefore rate of reaction increases.

Q. 85 (4)

$\mathrm{E}_{\mathrm{a}}=41570 \times \mathrm{R}=41570 \times 8.31=345612.98 \mathrm{~J}$
Q. 86 (4)
$\Delta \mathrm{H}=\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{b}}-40=80-\mathrm{E}_{\mathrm{b}} \quad \mathrm{E}_{\mathrm{b}}=120 \mathrm{~kJ} / \mathrm{mole}$,
catalyst lower the E_{f} To $20 \mathrm{~kJ} /$ mole for forward Rxn then $E_{f}^{\prime}=20 \mathrm{~kJ} / \mathrm{mol}$
we know catalyst decreases the Activation energy equal amount in both direction
$E_{b}^{\prime}=(120-60)=60 \mathrm{kj} / \mathrm{mol}$
$\frac{E_{b}}{E_{b}^{\prime}}=\frac{120}{60}=2.0$
Q. 87 (1)
$\mathrm{A}+\mathrm{B} \stackrel{\text { Fast }}{\rightleftharpoons} \mathrm{IAB} \xrightarrow{\mathrm{K}_{1}} \mathrm{AB}+\mathrm{I} \xrightarrow{\mathrm{K}_{2}} \mathrm{~A}+\mathrm{P}$
Since
$\mathrm{K}_{1} \lll \mathrm{~K}_{2}=$ most Imp. peack will be higher

$$
\Rightarrow \mathrm{T}=\frac{\mathrm{Ea}}{\mathrm{R} \ln \mathrm{~A}}
$$

Q. 80 (2)
Q. $88 \quad$ (2)

As $\Delta \mathrm{E}$ overall $=4$
So, first option is correct.

Q. 89 (2)

Slowest step is rate determining step.
Q. 90 (3)
$\mathrm{A}+2 \mathrm{~B}+\mathrm{C} \rightarrow \mathrm{D}$
$\mathrm{A}+\mathrm{B} \xrightarrow{\mathrm{K}_{1}} \mathrm{X}$ (Rapid)
$\mathrm{X}+\mathrm{C} \xrightarrow{\mathrm{K}} \mathrm{Y}$ (Slow)
$\mathrm{Y}+\mathrm{B} \longrightarrow \mathrm{D}$
(Fast)
Rate $=\mathrm{K}[\mathrm{X}][\mathrm{C}]$
Since X is not in the orginal reaction, hence it has to be eliminated.
from eq ${ }^{\mathrm{n}}(1), \mathrm{K}_{1}=\frac{[\mathrm{X}]}{[\mathrm{A}][\mathrm{B}]} \Rightarrow[\mathrm{X}]=\mathrm{K}_{1}[\mathrm{~A}][\mathrm{B}]$
Putting this value in eq" ${ }^{\text {(}}$ ()
Rate $=\mathrm{KK}_{1}[\mathrm{~A}][\mathrm{B}][\mathrm{C}]$
Rate $=K^{\prime}[A][B][C]$
\Rightarrow Order $=3$
Q. 91 (4)
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{D}+\mathrm{E}$
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$ (Slow)
$\mathrm{A}+\mathrm{C} \rightarrow \mathrm{E}$ (Fast)
\Rightarrow Rate $=\mathrm{K}[\mathrm{A}][\mathrm{B}]$
[As slowest step is rate determing step].

Q. 92 (1)

All the reactins
$\mathrm{r}=\mathrm{k}[\mathrm{No}]\left[\mathrm{NOBr}_{2}\right]$
Rate of reaction expression do not contain intermediate

$$
\begin{aligned}
& \therefore \mathrm{r}=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right] \\
& 2 \mathrm{NO}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NOBr}
\end{aligned}
$$

Q. 93 (4)

Rate $=\mathrm{k}_{1}[\mathrm{M}][\mathrm{Z}]$
from equation (1) $K_{e q}=\frac{[M]}{[x][y]}$.

$$
\begin{equation*}
\mathrm{M}=\mathrm{k}_{\mathrm{eq}}[\mathrm{x}][\mathrm{y}] \tag{2}
\end{equation*}
$$

put the value of M from (2) to (1)
Rate $=\mathrm{k}_{1}$ keg $[\mathrm{x}][\mathrm{y}][\mathrm{z}] \quad$ Rate $=\mathrm{k}[\mathrm{x}][\mathrm{y}][\mathrm{z}]$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)
$3 \mathrm{~A} \rightarrow$ Product $\mathrm{K}=1-10^{-3} \mathrm{lit}_{\text {mole }}{ }^{-1} \mathrm{~min}^{-1}$
Reaction is second order

$$
\mathrm{r}=\mathrm{K}[\mathrm{~A}]^{2} \Rightarrow \mathrm{r}=\left[\frac{1 \times 10^{-3}}{60}\right](2)^{2}
$$

$$
\Rightarrow 0=\frac{1 \times 10^{-3} \times 15}{60}=6.67 \times 10^{-5}
$$

$$
\begin{aligned}
& r=-\frac{1}{3} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{~A}]^{2}=6.67 \times 10^{-5} \\
& \Rightarrow \frac{-\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=2 \times 10^{-4}
\end{aligned}
$$

Q. 2 (D)

$$
\begin{aligned}
& -\frac{\mathrm{d}\left[\mathrm{MnO}_{4}^{-}\right]}{\mathrm{dt}}=4.56 \times 10^{-3} \mathrm{Ms}^{-1} \\
& -\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{MnO}_{4}^{-}\right]}{\mathrm{dt}}=+\frac{1}{5} \frac{\mathrm{~d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}} \\
& \frac{\mathrm{~d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}}=\frac{5}{2}\left[-\frac{\mathrm{d}\left[\mathrm{MnO}_{4}^{-}\right]}{\mathrm{dt}}\right] \\
& \frac{\mathrm{d}\left[\mathrm{I}_{2}\right]}{\mathrm{dt}}=\frac{5}{2} \times 4.56 \times 10^{-3}=11.4 \times 10^{-2} \mathrm{Ms}^{-1}
\end{aligned}
$$

Q. 3 (D)
$\mathrm{t}_{1 / 2}=\left(\frac{2-\sqrt{2}}{\mathrm{~K}}\right) \mathrm{c}_{0}^{1 / 2}$
For $\mathrm{n}^{\text {th }}$ order reaction
$\mathrm{t}_{1 / 2} \propto\left(\mathrm{C}_{0}\right)^{1-\text { order }}$
$1-\mathrm{n}=\frac{1}{2}$
So, $n=0.5$.

Q. 4 (A)

$K=\frac{1}{t(n-1)}\left[\frac{1}{C^{n-1}}-\frac{1}{\left(C_{O}\right)^{n-1}}\right]$
$; t=\frac{1}{(n-1) k}\left[\frac{1}{C^{n-1}}-\frac{1}{\left(C_{O}\right)^{n-1}}\right]$

$$
\begin{array}{ll}
\frac{t_{3 / 4}}{t_{1 / 2}}=\left(\frac{4^{n-1}-1}{2^{n-1}-1}\right) & \Rightarrow \frac{t_{3 / 4}}{t_{1 / 2}}=\frac{\left(2^{n-1}\right)^{2}-1}{2^{n-1}-1} \\
\frac{t_{3 / 4}}{t_{1 / 2}}=\frac{\left(2^{n-1}\right)\left(2 n^{-1}+1\right)}{\left(2^{n-1}-1\right)} & \Rightarrow \frac{t_{3 / 4}}{t_{1 / 2}}=\left(2^{n-1}+1\right)
\end{array}
$$

Q. 5 (B)
dt is parb parabolic graph
of $y=x^{2}$

So This the
$y^{2}=x$
graph of second order

$$
y=(x) \frac{1}{2}
$$

$$
\frac{-\mathrm{dc}}{\mathrm{dt}}=\mathrm{K}[\mathrm{C}]^{\frac{1}{2}}
$$

So reaction is $\left(\frac{1}{2}\right)$ order.
Q. $7 \quad$ (B)
$\mathrm{t}_{1}=\frac{2.303}{\mathrm{k}} \log \left(\frac{100}{67}\right)$
$\mathrm{t}_{2}=\frac{2.303}{\mathrm{k}} \log \left(\frac{100}{33}\right)$
$\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=\frac{2.303}{\mathrm{k}}\left[\log \frac{100}{33} \times \frac{67}{100}\right]$
$\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \frac{2.303}{\mathrm{k}} \times 0.30=30$
$\mathrm{k}=\frac{2.303}{30} \times \frac{30}{100}=2.303 \times 10^{2}$
$\mathrm{t}=\frac{2.303}{2.303 \times 10^{-2}} \log \left(\frac{100}{75}\right)$
$\mathrm{t}=100[\log 4-\log 3]=100[.6020 \times 0.4771]=$ $12.49=12.5$ minute
Q. 8 (D)
$2 \mathrm{~A}+\mathrm{B} \xrightarrow{\mathrm{k}} \mathrm{C}+\mathrm{D}$
$\mathrm{r}=\mathrm{K}[\mathrm{A}]^{1}[\mathrm{~B}]^{2} \quad \mathrm{r}_{\mathrm{o}}=\mathrm{K}\left(\mathrm{C}_{0}\right)^{1}\left(2 \mathrm{C}_{0}\right)^{2}=4$
$\mathrm{K}\left(\mathrm{C}_{0}\right)^{3}$

0
$\mathrm{x}=\left(\frac{\mathrm{C}_{0}}{4}\right) \quad[\mathrm{A}]=\mathrm{C}_{\mathrm{O}}-\frac{\mathrm{C}_{0}}{2}=\frac{\mathrm{C}_{0}}{2}$
$[B]=2 C_{o}-\frac{C_{0}}{4}=\frac{7 C_{0}}{4}$
$r=K\left(\frac{C_{0}}{2}\right)\left(\frac{7 C_{0}}{7}\right)^{2}=\frac{49 K\left(C_{0}\right)^{3}}{32}$
Q. 9 (B)
$\mathrm{K}=\frac{2.303}{80} \log \left(\frac{100}{6.25}\right)=3.465 \times 10^{-2} \mathrm{~mm}^{-1}$
Then $3.465 \times 10^{-2}=\frac{2.303}{100} \log \left(\frac{0.2}{a_{t}}\right)$
$a_{t}=0.00625$
Rate $=\mathrm{K} \times\left[\mathrm{a}_{\mathrm{t}}\right]=0.00625 \times 3.465 \times 10^{-2}$

$$
=2.166 \times 10^{-4} \mathrm{sec}^{-1}
$$

Q. 10 (B)
$\mathrm{A} \longrightarrow 2 \mathrm{~B}+\mathrm{C}$
$\mathrm{t}=0 \quad \mathrm{P}_{0} \quad 0 \quad 0 \quad \mathrm{P}_{0}$
$\mathrm{t}=\mathrm{t} \quad\left(\mathrm{P}_{\mathrm{O}}-\mathrm{x}\right) \quad 2 \mathrm{x} \quad \mathrm{x} \quad \mathrm{P}_{0}+2 \mathrm{x}=176$
$0 \quad 2 \mathrm{P}_{0} \quad \mathrm{P}_{0}$
$3 \mathrm{P}_{0}=270$

$$
\begin{array}{ll}
\mathrm{P}_{0}=90 & 2 \mathrm{x}=176-90=86 \\
& x=43
\end{array}
$$

Pressure of A after 10 minute $=90-43=47$
Q. 11 (C)
$K=\frac{\ln 2}{10}$
$\mathrm{K}_{2}=\frac{\ln 2}{\mathrm{~K}^{3}}$
10 min
Q. 12 (D)
 zero order First order
$t_{1 / 2}=\frac{\mathrm{a}}{2 \mathrm{~K}} \quad \mathrm{t}_{1 / 2}=\frac{\mathrm{In}_{2}}{\mathrm{~K}}$
$\Rightarrow \frac{\mathrm{a}}{2 \mathrm{~K}}=\frac{\ln _{2}}{\mathrm{~K}}$
$\Rightarrow \mathrm{a}=2 \ln _{2}$

Q. 13 (A)

$\mathrm{t}_{25}=\frac{1}{\mathrm{~K}_{1}} \ln \left(\frac{100}{75}\right)$
$\Rightarrow \mathrm{t}_{75 \%}=\frac{1}{\mathrm{~K}_{2}} \ln \left(\frac{100}{25}\right)$
$\frac{\mathrm{t}_{25}}{\mathrm{t}_{75}}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}} \frac{\ln \frac{4}{3}}{\ln 4}$
$\Rightarrow \quad \frac{t_{25}}{t_{75}}=\frac{\left(t_{1 / 2}\right)_{1}}{\left(t_{1 / 2}\right)_{2}} \times \frac{\left(\log \frac{4}{3}\right)}{\log 4}=\frac{3}{2}\left[\frac{\log 4-\log 3}{0.60}\right]$
$=\frac{3}{2}\left[\frac{0.60-0.48}{0.60}\right]=0.311: 1$
Q. 14 (C)

$$
A_{0}-2 x+4 x+x=0.15
$$

$\mathrm{A}_{0}=0.1$
$x=\frac{0.05}{3}$
$\frac{2}{6}=\mathrm{e}^{-7.5 \times 10^{-3} \mathrm{t}}$
$\ln (1.5) \times \frac{10^{3}}{7.5}=\mathrm{t}$
$\mathrm{t}=53.4 \mathrm{sec}$
Q. 15 (D)
$t_{3 / 4}=\frac{3\left[A_{0}\right]}{4 K}$
Q. 16 (C)
$\mathrm{A}+2 \mathrm{~B} \longrightarrow$ product
a $\quad 2 \mathrm{a} \quad \frac{-\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{K}(\sqrt{\mathrm{a}-\mathrm{x}}) \times \sqrt{2(\mathrm{a}-\mathrm{x})}$
(a-x) 2(a-x) Final
$K=\frac{2.303}{\sqrt{2} \times t} \log \frac{a}{(a-x)}$
$t_{1 / 2}=\frac{0.6932}{\sqrt{2} \mathrm{~K}}$
Q. 17 (C)
$\frac{d B}{d t}=\frac{-d A}{d t}=A_{0} K e^{-k t}$
Q. 18 (C)
$\log \left(a_{0}-x\right)=\log a_{0}-k t \log e$
kloge $=\frac{2}{10}$
$K=\frac{\ln 10}{5}=\frac{2.303}{5}=0.46$
Q. 19 (A)
$2 \mathrm{~A}+\mathrm{B} \longrightarrow$ product
$-\frac{d[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{K}[\mathrm{A}]$
$-\frac{d[A]}{d t}=K[a-x]$
$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$
$C_{t}=C_{0} e^{-K \times \frac{1}{K}}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-} \\
& \mathrm{C}_{\mathrm{t}}=\frac{\mathrm{C}_{0}}{\mathrm{e}}
\end{aligned}
$$

Q. 20 (B)

$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$
$\frac{1}{\mathrm{e}^{2}} \times \mathrm{C}_{0}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$
$\mathrm{e}^{-2}=\mathrm{e}^{-\mathrm{Kt}}$
$\mathrm{t}=\frac{2}{\mathrm{~K}}$
$\mathrm{t}=2$ natural life time.
Q. 21 (C)

From the given graph it is clear that the concentration decrease linearly with time then zero order Reaction and $\mathrm{A} \rightarrow 3 \mathrm{~B}$ type.
Q. 22 (A)
$\frac{0.8}{1.5}=\mathrm{e}^{-\mathrm{K} \times 20}$
$K=\frac{\ln (15 / 8)}{20}=0.03$

Q. 23 (A,B,D)

$\mathrm{t}_{1 / 2}=100$ days
$\mathrm{a}=$ entry $=\frac{6.93 \times 10^{-6}}{80} \mathrm{~mol} / \mathrm{L} /$ day

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{at}-\mathrm{kx}
$$

$\frac{0.643 \times 10^{-6}}{8}=\mathrm{t}=\frac{643}{100} \times \mathrm{x}$
$x=t \times \frac{10.4}{8}$
Q. 24 (C)
Q. 25 (C)

4 hr
0.25 m
Q. 26 (A)
$1-\frac{1}{100}=e^{-\frac{k}{2}}$
$\mathrm{K}=2 \ln$
$=0.02 \mathrm{~min}^{-1}$
Q. 27 (D)
$\mathrm{A}(\mathrm{s}) \longrightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
$K=\frac{1}{t} \ln \left(\frac{P_{\infty}-P_{0}}{P_{\infty}-P_{t}}\right) \quad P_{0}=0$
$P_{t}=150$
$\mathrm{P}_{\infty}=225$
$\frac{1}{20} \ln \left[\frac{225}{225-150}\right] \quad \Rightarrow \frac{1}{20} \ln \left(\frac{225}{75}\right)$
$=0.05 \ln 3$
$\frac{1}{20} \ln \left(\frac{225}{75}\right)=\frac{1}{20} \ln \left(\frac{225}{225 \times \mathrm{P}_{40}}\right) \Rightarrow\left(\frac{225}{75}\right)^{2}$
$=\frac{225}{225 \times P_{40}}$
$\frac{225}{75 \times 75}=\frac{1}{225-\mathrm{P}_{40}}$
$\Rightarrow P_{40}=200$
Q. 28 (A)
$0.1=e^{-\frac{K}{2}}$
$\ln 10=\frac{K}{2}$
$K=4.606$
Q. 29 (A)
molarity $=\frac{16.8}{11.2}=\frac{3}{2}$
Let new lolarity $=x$

$$
\begin{aligned}
& \frac{20 x}{1000} \times \frac{2}{4}=\frac{37.5 \times 0.02 \times 5}{1000} \\
& x=0.375
\end{aligned}
$$

Q. 30 (C)
$K=\frac{2.303}{(40-20)} \log \frac{(0.80-0.20)}{(0.35-0.20)}=6.93 \times 10^{-2}$
Q. 31 (C)

$$
\begin{array}{ll}
\mathrm{pH}=5 & \mathrm{pH}=6 \\
{\left[\mathrm{H}^{+}\right]=10^{-5}} & {\left[\mathrm{H}^{+}\right]=10^{-6}}
\end{array}
$$

$\frac{\left(\mathrm{t}_{1 / 2}\right)}{\left(\mathrm{t}_{1 / 2}\right)}=\left(\frac{10^{-5}}{10^{-6}}\right)^{1-\mathrm{n}}=\frac{1}{10}=(10)^{1-n}$
$10^{-1}=(10)^{1-n}$
$\Rightarrow 1-\mathrm{n}=-1$
$\Rightarrow \mathrm{n}=2$

Q. 32 (D)

$\left(2-\mathrm{x}_{\mathrm{B}}-\mathrm{x}_{\mathrm{C}}\right) 60^{\circ}-\left(\mathrm{x}_{\mathrm{B}}\right)+42^{\circ}\left(\mathrm{x}_{\mathrm{C}}\right)$
$=120^{\circ}-132^{\circ} \mathrm{x}_{\mathrm{B}}-18 \mathrm{x}_{\mathrm{C}}$
$\frac{\mathrm{x}_{\mathrm{B}}}{\mathrm{x}_{\mathrm{C}}}=\frac{1}{2}$
$=120^{\circ}-168^{\circ} \mathrm{X}_{\mathrm{B}}$
$t \rightarrow \infty \quad x_{B} \rightarrow 2 / 3$
$\mathrm{A}=0.5$
$\mathrm{B}=0.5$
$\theta=36^{\circ}$
Q. 33 (D)

$\left[\frac{C_{0}-C}{C}\right]$
For second order reaction $\quad \frac{1}{\mathrm{C}}=\frac{1}{\mathrm{C}_{0}}+\mathrm{kt}$
$\frac{1}{\mathrm{C}}-\frac{1}{\mathrm{C}_{0}}=\mathrm{kt} \quad\left(\frac{\mathrm{C}_{0}-\mathrm{C}}{\mathrm{C}}\right)$
$\left[\frac{\mathrm{C}_{0}-\mathrm{C}}{\mathrm{C}}\right]=\left(\mathrm{KC}_{0}\right) \mathrm{t} \quad$ So reaction is second order
Q. 34 (D)
$\mathrm{A} \rightarrow \mathrm{B}$ (uncatalysed reaction)
$A \xrightarrow{\text { catalyst }} B$ (catalyst reaction)
$K=A e^{-E_{a} / R T}$
$K_{\text {cat. }}=A e^{-E_{\text {alcat. }} / R T}$
$\frac{K_{\text {cat. }}}{K}=e^{\left(E_{a}-E_{a}^{\prime}\right) \times \frac{1}{R T}}$
$\frac{\mathrm{K}_{\text {cat. }}}{\mathrm{K}}=\mathrm{e}^{\frac{8.314 \times 10^{3}}{8.314 \times 300}}=\mathrm{e}^{3.33}=28$ times
Q. 35 (D)

Intermediate and product have less potential energy than activated complex.
Q. 36 (A)
$K=A e^{-} \frac{E_{a}}{R T}$
$\log \mathrm{k}=\log \mathrm{A}+\left(\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\right) \times \frac{1}{T}$
Q. 37 (C)
$\log \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\log 2=\frac{E_{a}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
$0.3=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}} \times \frac{10}{280 \times 290}$
$E_{a}=0.3 \times 2.303 \times 280 \times 29 \times R$
.....(1)
Now again
$\log \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\left[\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right]$
$\log \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{0.3 \times 2.303 \times 280 \times 29 \mathrm{R}}{2.303 \mathrm{R}}\left[\frac{10}{290 \times 300}\right]$
$=1.905$.

JEE-ADVANCED

MCQ/COMPREHENSION/MATCHING

Q. 1 (ABC)

Rate $=K[A]^{2}[B]$
\Rightarrow rate w.r.t $\mathrm{B}=1$
Overall order of the reaction $=2+1=3$
for a complex reaction the rate determing step is determined experimentally.
Q. 2 (BD)

In SN ${ }^{1}$ reaction, formation of carbocation takes place which is planar.
\Rightarrow equimolar mixture of (I) and (II) will be formed in case of SN^{1}.

In SN^{2} reaction Nucleophile will attack from the opposite to leaving group
\Rightarrow Product (II) will be formed in case of SN^{2} reaction.

Q. 3 (BC)

A $\xrightarrow{\mathrm{H}^{+}} \mathrm{B}$
Rate $=\mathrm{K}\left[\mathrm{H}^{+}\right][\mathrm{A}]$
Rate $=$ K' $[\mathrm{A}]$
If K' has greater value for HA
$\Rightarrow\left[\mathrm{H}^{+}\right]$has to be large
\Rightarrow for that acid has be stronger
$\Rightarrow[\mathrm{HA}]$ is strongers that HB
Also Relative strength $=2$

Q. 4 (ABCD)

(A) For zero order reaction
$\mathrm{t}_{1 / 2}=\frac{\mathrm{a}_{0}}{2 \mathrm{~K}}$
$\Rightarrow \mathrm{t}_{1 / 2} \alpha \mathrm{a}_{0}$ (initial concentration)
(B) For first order reaction

Average life $=1.44 \times$ half life
(C) For II $^{\text {nd }}$ order reaction
$\mathrm{t}_{1 / 2}=\frac{1}{\mathrm{KC}_{0}}(\mathrm{Co}=$ initial concentration $)$
Also $\mathrm{Kt}=\frac{1}{\mathrm{C}}-\frac{1}{\mathrm{C}_{0}}$
$t_{3 / 4}=\frac{1}{t}\left[\frac{1}{C_{0} / 4}-\frac{1}{C_{0}}\right]$
$=\frac{1}{\mathrm{~K}} \times \frac{3}{\mathrm{C}_{0}}=\frac{3}{\mathrm{KC}_{0}}=3 \times \mathrm{t}_{1 / 2}$
$\Rightarrow \mathrm{t}_{3 / 4}=3 \times \mathrm{t}_{1 / 2}$
(D) ${ }_{99.9}=\frac{2.303}{0.0693} \log \frac{100}{0.1}$
$\mathrm{t}_{99.9}=100 \mathrm{~min}$

Q. 5 (ACD)

$t_{1 / 2}$ of (A) zero (C) second (D) third order varies with concentration.
Q. 6 (AB)

Since $[Q]=[R]$ all the times,
$[\mathrm{P}]=\mathrm{P}_{0} \mathrm{e}^{-\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) \mathrm{t}}=\mathrm{P}_{0}\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}\right)\left(1-\mathrm{e}^{-\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) \mathrm{t}}\right)$
As $\mathrm{K}_{1}=\mathrm{K}_{2}$
$\Rightarrow e^{-2 K_{1} t}=\frac{1}{2}-\frac{1}{2} e^{-2 K_{1} t}$
$\Rightarrow \frac{3}{2} \mathrm{e}^{-2 \mathrm{~K}_{1} \mathrm{t}}=\frac{1}{2}$
$\Rightarrow \mathrm{e}^{-2 \mathrm{~K}_{1} \mathrm{t}}=\frac{1}{3}$
Taking \ln of both side
$-2 \mathrm{~K}_{1} \mathrm{t}=-\ln 3$
$\mathrm{t}=\frac{\ln 3}{2 \mathrm{~K}_{1}}=\frac{2.303}{2 \mathrm{~K}_{1}} \log _{10} 3$
As $\mathrm{K}_{1}=\mathrm{K}_{2}$
$\mathrm{t}=\frac{2.303}{2 \mathrm{~K}_{2}} \log _{10} 3$
Q. 7 (ABC)

From the given data, it is clear that
(A) keeping [B] constant, After doubling the concentration of $[\mathrm{A}]$ makes the rate of reaction four times. \Rightarrow reaction is of order two w.r.t. A.
(B) Similarly order w.r.t. $\mathrm{B}=1$
(C) Rate $=\mathrm{K}[\mathrm{A}]^{2}[\mathrm{~B}]$
$5 \times 10^{-4}=\mathrm{K} \times\left(2.5 \times 10^{-4}\right)^{2} \times 3.0 \times 10^{-5}$
$\Rightarrow \mathrm{K}=2.67 \times 10^{8} \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
(D) order $=2+1=3$
Q. 8 (AB)

$$
\mathrm{K}_{1}=1.26 \times 10^{-4} \mathrm{sec}^{-1}
$$

$$
\mathrm{K}_{2}=3.8 \times 10^{-5} \mathrm{sec}^{-1}
$$

$\% \mathrm{~B}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{1}+\mathrm{K}_{2}} \times 100=76.83 \%$
$\% \mathrm{C}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}} \times 100=23.17 \%$
Q. 9 (ABC)

For the given curve
(A) $a=E_{B}$
(B) $b=E_{A}$
(C) $\Delta \mathrm{H}_{\mathrm{A}}=\mathrm{b}-\mathrm{d}$ and $\Delta \mathrm{H}_{\mathrm{B}}=\mathrm{a}-\mathrm{c}$
Q. 10 (BCD)
Q. 11 (ABD)

From figure it is clear that $\mathrm{E}_{\mathrm{a}}($ forward $)=y$
$\mathrm{E}_{\mathrm{a}}($ backward $)=\mathrm{Z}$
$\Delta \mathrm{Hr}=+\mathrm{x}$
Q. 12 (AB)
(A) $\mathrm{A} \xrightarrow{\mathrm{Ea}=50 \mathrm{kcal}} \Delta \mathrm{H}=-10 \mathrm{KCal}$

Ea $($ backward $)=60 \mathrm{KCal}$
(B) A $\xrightarrow{\mathrm{Ea}=60 \mathrm{kcal}} \mathrm{B} ; \Delta \mathrm{H}=-20 \mathrm{KCal}$

Ea (backward) $=80 \mathrm{KCal}$
(C) A $\xrightarrow{\text { Ea=50kcal }} \mathrm{B} ; \Delta \mathrm{H}=+10 \mathrm{KCal}$
$\mathrm{Ea}($ backward $)=40 \mathrm{KCal}$
(D) A $\xrightarrow{\mathrm{Ea}=60 \mathrm{kcal}} \mathrm{B} ; \Delta \mathrm{H}=+20 \mathrm{KCal}$
Q. 13 (ABCD)
Q. 14 (CD)
$2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})$
Slowest step is rate determing step
rate $=\mathrm{K}\left[\mathrm{O}_{3}\right][\mathrm{O}]$
Since, [O] is not in the original reaction hence it has to be eliminated.
From first step
$\mathrm{K}_{1}=\frac{\left[\mathrm{O}_{2}\right][\mathrm{O}]}{\left[\mathrm{O}_{3}\right]} \Rightarrow[\mathrm{O}]=\frac{\mathrm{K}_{1}\left[\mathrm{O}_{3}\right]}{\left[\mathrm{O}_{2}\right]}$
Putting the value of [O] in the eq. (1)

$$
\begin{aligned}
& \text { rate }=\mathrm{K}_{1} \mathrm{~K}\left[\mathrm{O}_{3}\right] \frac{\left[\mathrm{O}_{3}\right]}{\left[\mathrm{O}_{2}\right]} \\
& \text { Rate } \left.=\mathrm{K}_{[} \mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1}
\end{aligned}
$$

Q. 15 (ABC)

Energy of activation can never be negative Option (D) is incorrect.
Q. 16 (ACD)

Comprehension \# 1

Q. 17 (D)

$$
\begin{aligned}
& 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} \\
& \frac{\mathrm{~d}\left[\mathrm{SO}_{3}\right]}{\mathrm{dt}}=10 \mathrm{~g} / \mathrm{sec}^{-1} \\
& \frac{\mathrm{~d}\left[\mathrm{SO}_{3}\right]}{\mathrm{dt}}=\frac{1}{8} \mathrm{~mol} / \mathrm{sec} \\
& \text { As } \quad \frac{-1}{2} \frac{\mathrm{~d}\left[\mathrm{SO}_{2}\right]}{\mathrm{dt}}=-\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{SO}_{3}\right]}{\mathrm{dt}} \\
& \Rightarrow-\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=\frac{1}{16} \mathrm{~mol} / \mathrm{sec} \\
& \Rightarrow \frac{\mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=2 \mathrm{~g} \mathrm{sec}^{-1}
\end{aligned}
$$

Q. 18 (A)
$\mathrm{aA} \rightarrow \mathrm{bB}$
$-\frac{1}{\mathrm{a}} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{1}{\mathrm{~b}} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
$\left(-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right) /\left(\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}\right)=\frac{\mathrm{a}}{\mathrm{b}}$
$\log \left(-\frac{d[A]}{d t}\right)=\log \left(\frac{d[B]}{d t}\right)+\log \left(\frac{a}{b}\right)$
$\Rightarrow \log \left(\frac{a}{b}\right)=0.6$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=3.98$
Q. 19 (B)

$$
\begin{aligned}
2 \mathrm{ND}_{3} & \rightarrow \mathrm{~N}_{2}+3 \mathrm{D}_{2} \\
& \frac{-\mathrm{d}\left[\mathrm{ND}_{3}\right]}{2 \mathrm{dt}}=\frac{\mathrm{dN}}{2} \\
\mathrm{dt} & =\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{D}_{2}\right]}{\mathrm{dt}} \\
& \frac{-1}{2} \mathrm{~K}_{1}\left[\mathrm{ND}_{3}\right]=\mathrm{K}_{2}\left[\mathrm{ND}_{3}\right]=\frac{1}{3} \times \mathrm{K}_{3}\left[\mathrm{ND}_{3}\right] \\
& \frac{\mathrm{k}_{1}}{2}=\mathrm{k}_{2}=\frac{\mathrm{k}_{3}}{3} \\
& 3 \mathrm{k}_{1}=6 \mathrm{k}_{2}=2 \mathrm{k}_{3} \text { (by multiplying with 6) }
\end{aligned}
$$

Comprehension \# 2

20. (A)
$P_{B}=2 p=\frac{P_{0}}{4}=\frac{10}{4}=2.25 \mathrm{bar}$
21. (D)
$K=\frac{2.303}{t_{1}} \log \frac{P_{0}}{P_{0}-p}$
$\log \frac{64}{49}=\frac{2.303}{t_{1}} \log \frac{10}{10-1.125}$
$\mathrm{t}_{1}=1.15 \mathrm{sec}$.
22. (B)

Rate constant depends only on temperature.
$\therefore \quad 1: 1: 1$

(20 to 22)

	$\mathrm{A}(\mathrm{g})$	$2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$	
$\mathrm{t}=0$	P_{0}		P_{C}
$\mathrm{t}=\mathrm{t}$	$\mathrm{P}_{0}-\mathrm{p}$	$2 \mathrm{p} \mathrm{P}_{\mathrm{C}}+\mathrm{p}$	
$\mathrm{t}=\infty$	0	$2 \mathrm{P}_{0}$	$P_{0}+P_{C}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{C}}=\frac{1}{3}\left[\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}\right] \\
& 3 \mathrm{P}_{\mathrm{C}}=\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}} \\
& 2 \mathrm{P}_{\mathrm{C}}=\mathrm{P}_{0} \\
& \mathbf{P}_{\mathrm{C}}=\frac{\mathrm{P}_{0}}{2} \\
& \mathrm{P}_{\mathrm{T}} \quad=\mathrm{P}_{0}-\mathrm{p}+2 \mathrm{p}+\mathrm{P}_{\mathrm{C}}+\mathrm{p} \\
& =P_{0}+P_{C}+2 p \\
& \mathrm{P}_{\infty} \quad=2 \mathrm{P}_{0}+\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}} \\
& =3 \mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}} \\
& \mathrm{P}_{\mathrm{T}} \quad=\frac{1}{2} \mathrm{P}_{\infty} \text { (given) } \\
& \mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}+2 \mathrm{p}=\frac{1}{2}\left[3 \mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}\right] \\
& \frac{3 \mathrm{P}_{0}}{2}+2 \mathrm{p}=\frac{1}{2}\left[3 \mathrm{P}_{0}+\frac{\mathrm{P}_{0}}{2}\right] \\
& \frac{3 P_{0}}{2}+2 p=\frac{1}{2} \times \frac{1}{2} \times 7 P_{0} \\
& 2 \mathrm{p}=\frac{7}{4} \mathrm{P}_{0}-\frac{3 \mathrm{P}_{0}}{2} \\
& 2 p=\frac{P_{0}}{4} \\
& \mathbf{P}=\frac{\mathrm{P}_{0}}{8} \\
& \mathrm{P}_{\infty}=3 \mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}=35 \\
& =3 \mathrm{P}_{0}+\frac{\mathrm{P}_{0}}{2}=35 \\
& =\frac{7 \mathrm{P}_{0}}{2}=35 \\
& P_{0}=10 \mathrm{bar}
\end{aligned}
$$

Comprehension \# 3

23. (B)

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-}+\mathrm{Cr}^{3+} \longrightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{Mn}^{4+} \\
& 2 \mathrm{CrO}_{4}^{-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Let Rate Law is

$$
\begin{aligned}
& \text { Rate }=\mathrm{K}\left[\mathrm{MnO}_{4}^{-}\right]^{\mathrm{a}}\left[\mathrm{Cr}^{3+}\right]^{\mathrm{b}} \\
& \text { Rate }=-\frac{\mathrm{d}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]}{\mathrm{dt}}=\left[\frac{\mathrm{C}_{\mathrm{f}}-\mathrm{C}_{\mathrm{i}}}{\Delta \mathrm{t}}\right]
\end{aligned}
$$

From Exp. 1 and 2

$$
\begin{align*}
& {\left[\frac{0.01 \times 0.1 \times 10^{-3}}{\text { V.f. }}\right] \times \frac{1}{22}=\mathrm{K}\left(1 \times 25 \times 10^{-3}\right)^{\mathrm{a}}} \\
& \left(1 \times 25 \times 10^{-3}\right)^{\mathrm{b}} \\
& {\left[\frac{0.01 \times 0.1 \times 10^{-3}}{\text { V.f. }}\right] \times \frac{1}{11}=\mathrm{K}\left(2 \times 25 \times 10^{-3}\right)^{\mathrm{a}}} \\
& \left(1 \times 25 \times 10^{-3}\right)^{\mathrm{b}} \tag{2}\\
& \quad \frac{1}{2}=\frac{1}{(2)^{\mathrm{a}}} \\
& \Rightarrow \text { So, } \quad \mathrm{a}=1
\end{align*}
$$

24. (A)

Similarly from Exp. 1 and 3
$\frac{\left[\frac{0.01 \times 0.01 \times 10^{-3}}{\text { V.f. }}\right] \times \frac{1}{22}}{\left[\frac{0.01 \times 0.1 \times 10^{-3}}{\text { V.f. }}\right] \times \frac{1}{45}}$
$=\frac{\mathrm{K}\left(1 \times 25 \times 10^{-3}\right)^{\mathrm{a}}\left(1 \times 25 \times 10^{-3}\right)^{\mathrm{b}}}{\mathrm{K}\left(1 \times 25 \times 10^{-3}\right)^{\mathrm{a}}\left(0.5 \times 25 \times 10^{-3}\right)^{\mathrm{b}}}$
$2=(2)^{b}$
So, $\mathrm{b}=1$
25. (B)

So, order with respect to $\mathrm{MnO}_{4}^{-}=1$ with respect to $\mathrm{Cr}^{3+}=1$.
Overall order $=2$.
So, rate law
Rate $=\mathrm{K}\left[\mathrm{MnO}_{4}^{-}\right]\left[\mathrm{Cr}^{3+}\right]$
So, reaction is elementry reaction.
Comprehension \# 4
26. (C)

$t=0 \quad a$
$t-t \quad a-x-y$
$\therefore \quad[\mathrm{A}]_{0}=[\mathrm{A}]_{\mathrm{t}}+\frac{[\mathrm{B}]_{\mathrm{t}}}{2}+\frac{[\mathrm{C}]_{\mathrm{t}}}{3}$
$a=a-x-y+\frac{2 x}{2}+\frac{3 y}{3}$
$\mathbf{a}=\mathbf{a}$
27. (B)

$$
\begin{aligned}
& \frac{[X]_{t}}{[Y]_{t}+[Z]_{t}}= \\
& \begin{aligned}
\frac{k_{1} a}{k_{1}+k_{2}}\left[1-e^{-\left(k_{1}+k_{2}\right) t}\right]+\frac{\mathrm{k}_{2} a}{\left(k_{1}+k_{2}\right)}\left[1-e^{-\left(k_{1}+k_{2}\right) t}\right]
\end{aligned} \\
& =\frac{a e^{-\left(k_{1}+k_{2}\right) t}}{\left[1-e^{-\left(k_{1}+k_{2}\right) t}\right]\left[\frac{k_{1} a+k_{2} a}{k_{1}+k_{2}}\right]} \\
& =\frac{e^{-\left(k_{1}+k_{2}\right) t}}{1-e^{-\left(k_{1}+k_{2}\right) t}} \\
& =\frac{1}{\left[e^{\left(k_{1}+k_{2}\right) t}-1\right]}=\frac{1}{\left[e^{k t}-1\right]} \\
& {\left[\text { where } k=k_{1}+k_{2}\right]}
\end{aligned}
$$

28. (B)

Fraction of acetic acid reacting $=\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{k}_{2}}=\frac{3}{3+4}$ $=\frac{3}{7}$
29. (A)
$\frac{[B]_{t}}{[C]_{t}}=\frac{3 \mathrm{k}_{1}}{4 \mathrm{k}_{2}}$ which depends only on temperature not on time.

Comprehension \# 5

Q. 30 (B)
$\frac{d f}{d t}=K(1-f)$
$K=\frac{1}{t} \ln \frac{1}{1-f}$
$K=\frac{1}{200}[\ln 1-\ln (1-f)]$
$\Rightarrow \mathrm{K}=\frac{3}{200}$
$\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}=\frac{0.693}{3 / 200}$
$\mathrm{t}_{1 / 2}=46.2 \mathrm{hrs}$
Q. 31 (A)

$$
\begin{aligned}
& 1-\mathrm{f}=\mathrm{e}^{-\mathrm{kt}} \\
& \Rightarrow \quad \mathrm{f}=1-\mathrm{e}^{-\mathrm{kt}}
\end{aligned}
$$

Putting the value of k in from $\mathrm{eq}^{\mathrm{n}}(1)$
$\mathrm{f}=1-\mathrm{e}^{-3 \mathrm{t} 200}$

Comprehension \# 6

Q. 32 (B)

$2-x-y=1$
$\Rightarrow \mathrm{x}+\mathrm{y}=1$
$\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}=\mathrm{K}_{\mathrm{l}}[\mathrm{A}]$
$\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=2 \mathrm{~K}_{1}[\mathrm{~A}]$
Also, $\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\mathrm{K}_{2}[\mathrm{~A}]$
$\Rightarrow \frac{[\mathrm{B}]}{[\mathrm{C}]}=\frac{2 \mathrm{~K}_{1}}{\mathrm{~K}_{2}}=2 \times \frac{1}{2}\left(\right.$ Given $\left.\mathrm{K}_{1}: \mathrm{K}_{2}=1: 2\right)$
$\Rightarrow[\mathrm{B}]=[\mathrm{C}]$
$\Rightarrow 2 \mathrm{x}=\mathrm{y}$
Solving (1) and (2)
$\mathrm{x}=\frac{1}{3}, \mathrm{y}=\frac{2}{3}$
Total moles after 50% of the reaction
$=2-\mathrm{x}-\mathrm{y}+2 \mathrm{x}+\mathrm{y}$
$=2+x=7 / 3$
Q. 33 (B)

No. of Moles of $B=2 x$
$=2 / 3$
$=0.666$

Comprehension \# 7

Q. 34 (C)
$\frac{d N}{d t}=\alpha-\lambda N$
$\Rightarrow \int_{N_{0}}^{N} \frac{d N}{\alpha-\lambda N}=\int_{0}^{t} d t$
$\Rightarrow \mathrm{N}=\frac{1}{\lambda}\left[\alpha-\left(\alpha-\lambda \mathrm{N}_{0}\right) \mathrm{e}^{-\lambda t}\right]$
Q. 35 (C)

Put $\alpha=2 \mathrm{~N}_{0} \lambda$
and $\mathrm{t}=\mathrm{t}_{1 / 2}=\frac{\ln 2}{\lambda}$

Q. 36 (B)

At steady state
$\frac{\mathrm{dN}}{\mathrm{dt}}=\alpha-\lambda \mathrm{N}=0$
$\mathrm{N}=\frac{\alpha}{\lambda}=4 \mathrm{~N}_{0}$

Comprehension \# 8

Q. 37 (A) Greater is the temperature greater is the rate constant.
Q. 38 (C) Activation energy is independent on temperature.
Q. 39 (A) At higher temperature value of ' k ' is more.

Comprehension \# 9

Q. 40 (A)
$\log \mathrm{k}=\log _{10} \mathrm{~A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
When $E_{a}=0, k=3.2 \times 10^{5}$ \& it does not depend on T
Q. 41 (B)

When $\mathrm{E}_{\mathrm{a}}=$ is max,

$$
\frac{\mathrm{k}_{310}}{\mathrm{k}_{300}} \text { would be max }
$$

Q. 42 (C)
$\log \left(\frac{\mathrm{K}_{1}}{\mathrm{~K}_{1}^{\prime}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
Also $\log \left(\frac{K_{2}}{\mathrm{~K}_{2}^{\prime}}\right)=\frac{\mathrm{E}_{\mathrm{a}}^{\prime}}{2.303 \mathrm{R}}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$.
eq. (1)/(2)

$$
\begin{aligned}
& \frac{\log \left(\frac{K_{1}}{K_{1}^{\prime}}\right)}{\log \left(\frac{K_{2}}{K_{2}^{\prime}}\right)}=\frac{E_{a}}{E_{a}^{\prime}} \\
& \Rightarrow \frac{\log \left(\frac{K_{1}}{K_{1}^{\prime}}\right)}{\log \left(\frac{K_{2}}{K_{2}^{\prime}}\right)}>1 \quad\left(\mathrm{E}_{\mathrm{a}}<\mathrm{E}_{\mathrm{a}}^{\prime}\right)
\end{aligned}
$$

$$
\frac{\mathrm{K}_{1}}{\mathrm{~K}_{1}^{\prime}}>\frac{\mathrm{K}_{2}}{\mathrm{~K}_{2}^{\prime}}
$$

Q. 43 (A)
$10^{15} e^{\frac{-2000}{\mathrm{~T}}} 10^{15} e^{\frac{-2000}{\mathrm{~T}}}=10^{14} e^{\frac{-1000}{\mathrm{~T}}}$
$10=e^{\frac{-1000}{T}+\frac{2000}{T}}$
$10=e^{\frac{1000}{T}}$
$\ln 10=\frac{1000}{T}$
$\mathrm{T}=\frac{1000}{2.303}$
$\mathrm{T}=434.22 \mathrm{~K}$

Comprehension \# 10

Q. 44 (A)
$\mathrm{A} \rightarrow \mathrm{B}$
$\log _{10} K=14-\frac{1.25 \times 10^{4}}{T}$
$\log \mathrm{K}=\log \mathrm{A}--\frac{\mathrm{E}_{\mathrm{a}}}{2.303 R \mathrm{~T}}$
Comparing
$\log \mathrm{A}=14$
$\Rightarrow \quad \mathrm{A}=10^{14} \mathrm{sec}^{-1}$
Also
$\frac{\mathrm{E}_{\mathrm{a}}}{2.303 R T}=\frac{1.25 \times 10^{4}}{\mathrm{~T}}$
$\Rightarrow \mathrm{E}_{\mathrm{a}}=\mathbf{2 . 3 9 . 3 4} \mathbf{K J}$
Q. 45 (B)

Exponential factor $=0$
when $\mathrm{T}=\infty$
Free radical combination
Energy of activation + Threshold energy
Q. 46 (A)

For an endothermic reaction

Q. 47 (A)

When x moles of I_{3}^{-}form per litre then decrease in concentrations of the reactants are $3 x$ and $3 x$.
Q. 48 (B)
$\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \longrightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$.

Q. 49 (B)

Rate is determined by the slow step of the mechanism.
Q. 50 (B)

$$
\text { Reaction } \quad \begin{aligned}
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} & \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-} \\
-\frac{\mathrm{d}\left[\mathrm{l}_{2}\right]}{\mathrm{dt}} & =-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]}{\mathrm{dt}}=
\end{aligned}
$$

$\frac{\mathrm{d}\left[\mathrm{S}_{4} \mathrm{O}_{6}^{2-}\right]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{l}^{-}\right]}{\mathrm{dt}}$

Comprehension \# 12

Q. 51 (A)
$\Delta \mathrm{m}=$ (At. mass of ${ }_{4}^{10} \mathrm{Be}-4 \mathrm{~m}_{\mathrm{e}}$) - (At. mass of ${ }_{5}^{10} \mathrm{Be}-5 \mathrm{~m}_{\mathrm{e}}+\mathrm{m}_{\mathrm{e}^{-}}$)

Q. 52 (D)

$\Delta \mathrm{m}=\left(\right.$ At. mass of $\left.{ }_{5} \mathrm{~B}^{8}-5 \mathrm{~m}_{\mathrm{e}^{-}}\right)-$(At. mass of $\left.{ }_{4}^{8} B-4 m_{e^{-}}+\mathrm{m}_{\mathrm{e}^{-}}\right)$
Q. $53 \mathrm{~A} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s} ; \mathrm{B} \rightarrow \mathbf{q}, \mathrm{r}, \mathrm{s} ; \mathbf{C} \rightarrow \mathrm{p}, \mathbf{q}, \mathrm{r}, \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{p}$, r, s
(A) $\mathrm{r}=\mathrm{k}[\mathrm{A}][\mathrm{B}]$
i.e. IInd ${ }^{\text {nd }}$ order reaction unit of $\mathrm{k}=\mathrm{mol}^{-1} \mathrm{lt}$ time ${ }^{-1}$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{A}][\mathrm{B}]$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}$
$\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{A}}=\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{B}}$ if A and B are taken in stoichiometric ratio.
(B) $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$
$\mathrm{r}=\mathrm{k}_{2}[\mathrm{~B}]^{\circ}[\mathrm{A}]=\mathrm{k}_{2}[\mathrm{~A}]$
unit of $\mathrm{k}=$ time $^{-1} \quad$ does not have concentration unit.
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\mathrm{k}_{2}[\mathrm{~A}]$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}$
(C) $\quad \mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$
$\mathrm{r}=\mathrm{k}_{3}[\mathrm{~A}]^{\circ}[\mathrm{B}]^{\circ}$
unit of $\mathrm{k}=$ mole litre ${ }^{-1}$ time $^{-1}$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\mathrm{k}_{3}$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}$
(D) $\quad 2 \mathrm{~A}+\mathrm{B} \longrightarrow 2 \mathrm{C}+3 \mathrm{D}$
$\mathrm{r}=\mathrm{K}_{3}[\mathrm{~A}]^{\circ}[\mathrm{B}]^{\circ}$
unit of $K=$ mol lt $^{-1}$ time $^{-1}$
$-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}$
$-\frac{d[A]}{d t}=\frac{d[C]}{d t}$
Q. $54 \quad(\mathrm{~A} \rightarrow \mathbf{r}) ;(\mathbf{B} \rightarrow \mathbf{s}) ;(\mathbf{C} \rightarrow \mathbf{q}) ;(\mathbf{D} \rightarrow \mathbf{p})$
(A) for zero order reaction $\mathrm{C}=\mathrm{Co}-\mathrm{kt}$
(B) for frist order reaction $\log \mathrm{C}=\log \mathrm{Co}-\frac{\mathrm{k}}{2.303} \times$
t
(C) for zero order reaction $\frac{-\mathrm{dc}}{\mathrm{dt}}$ vs C equal to zero
(D) for first order reaction $\frac{-\mathrm{dc}}{\mathrm{dt}}=\mathrm{kc}, \log \left(\frac{\mathrm{dc}}{\mathrm{dt}}\right)$
$=\log \mathrm{k}+\log \mathrm{c}$
Hence plot of $\log \left(\frac{-\mathrm{dc}}{\mathrm{dt}}\right)$ against $\log \mathrm{c}$ (abscissa) will have slope
equal to unity
Q. 55 A-S, B-QST, C-QRS, D-QS

$$
\underset{\substack{(\mathrm{A}) \mathrm{CH}_{3} \mathrm{COOCH}_{3} \\ \mathrm{CH}_{3} \mathrm{OH}}}{\mathrm{H}} \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+
$$

molecularity $=2$; order $=1$
(B) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
molecularity $=2$; order $=1$
$\underset{\mathrm{CH}_{3} \mathrm{OH}}{(\mathrm{C}) \mathrm{CH}_{3} \mathrm{COOCH}_{3}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+$
molecularity $=2$; order $=2$
(D) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+$ $\mathrm{CH}_{3} \mathrm{OH}$
order $=2$
Q. 56 (A) $\mathbf{p}, \mathbf{q}, \mathbf{s} ;$ (B) $\mathbf{p}, \mathbf{q}, \mathbf{s} ;$ (C) $\mathbf{q}, \mathbf{r} ;$ (D) $\mathbf{p}, \mathbf{q}, \mathbf{r}$
(A)
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \xrightarrow{\text { Ist order }} 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ NO_{2} and O_{2} are paramagnetic molecules.

In $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ Nitrogen atom is SP^{2} hybridised.
Half life is not dependent at initial concentration. Reaction goes back ward.
(B) $\quad 2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{\text { Ist order }} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$ $\mathrm{O}_{2}(\mathrm{~g})$ moelcule is paramagnetic.
In $\mathrm{H}_{2} \mathrm{O}_{2}$ Oxygen atom is SP^{3} hybridised.
Half life is not dependent at initial concentration. Reaction goes back ward.
(C)
$2 \mathrm{NH}_{3} \xrightarrow{\text { Zero order }} \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ both are diamagnetic molecules.
In $\dot{\mathrm{N}} \mathrm{H}_{3}$ Nitrogen atom is SP^{3} hybridised.
$t_{1 / 2}=\frac{C_{0}}{2 k}$ for zero order reaction.
Rate remains always constant.
(D) $\quad 2 \mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g}) \xrightarrow{\text { Zero order }} 4 \mathrm{ClO}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})$ $\mathrm{ClO}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ both are paramagnetic molecules. In $\mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g})$ chlorine atom is SP^{3} hybridised.
$t_{1 / 2}=\frac{C_{0}}{2 k}$ for zero order reaction.
Rate remains always constant.
Q. $57 \quad \mathrm{~A} \rightarrow \mathrm{~S}, \mathrm{~B} \rightarrow \mathrm{R}, \mathrm{C} \rightarrow \mathrm{P}, \mathrm{D} \rightarrow \mathbf{Q}$
Q. $58 \quad(\mathrm{~A}-\mathrm{r} ; \mathrm{B}-\mathrm{s} ; \mathrm{C}-\mathrm{p} ; \mathrm{D}-\mathbf{q})$
(A) $2.303 \log _{10} \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left[\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2} \mathrm{~T}_{1}}\right]$

$$
\Rightarrow \quad \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=11
$$

$$
\mathrm{T}_{2}=298 \mathrm{~K} ; \mathrm{T}_{1}=273 \mathrm{~K}, \mathrm{E}_{\mathrm{a}}=65000 \mathrm{~J}, \mathrm{R}=8.314
$$

$\mathrm{J} /(\mathrm{mol} \mathrm{K})$
(B) $\frac{2.5}{20}=\frac{1}{8}=\left(\frac{1}{2}\right)^{n}$
$\Rightarrow \mathrm{n}=3 \Rightarrow \mathrm{t}=3 \times \frac{0.693}{0.0693}=30$
(C) Zero order : $\mathrm{t}_{1 / 2}=\frac{\mathrm{a}}{2 \mathrm{~K}}$

I order : $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}$
$\frac{1}{2 \mathrm{~K}_{1}}=\frac{0.693}{\mathrm{~K}_{2}}$
$\Rightarrow \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=2 \times 0.693$
(D) $\mathrm{t}_{1 / 2} \propto(a)^{1-\mathrm{n}}$ or $(1-\mathrm{n})=\frac{\log \mathrm{t}^{\prime}{ }_{1 / 2}-\log \mathrm{t}^{\prime \prime}{ }_{1 / 2}}{\log \mathrm{a}^{\prime}-\log \mathrm{a}^{\prime \prime}}$

$$
\begin{aligned}
& \mathrm{t}_{1 / 2} \propto \frac{1}{\mathrm{a}^{\mathrm{n}-1}} \\
\Rightarrow & \frac{480}{240}=\left(\frac{0.0677}{0.136}\right)^{\mathrm{n}-1} \quad \mathrm{n}=0
\end{aligned}
$$

Q. $59 \quad \mathrm{~A} \rightarrow \mathrm{P}, \mathrm{B} \rightarrow \mathbf{Q}, \mathrm{S} \quad \mathrm{C} \rightarrow \mathbf{R}, \mathbf{T} \quad \mathrm{D} \rightarrow \mathrm{V}$
Q. $60 \quad \mathrm{~A} \rightarrow \mathbf{R}, \mathbf{B} \rightarrow \mathbf{Q}, \mathbf{C} \rightarrow \mathbf{P}, \mathbf{D} \rightarrow \mathbf{S}$

From the figure it is clear that.
$\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{AB}$
(A) $\mathrm{Eat}=40 \mathrm{KJ} / \mathrm{mol}$
(B) $\mathrm{E}_{\mathrm{ab}}=50 \mathrm{KJ} / \mathrm{mol}$
(C) $\Delta \mathrm{Hr}=-10 \mathrm{KJ} / \mathrm{mol}$

NUMERICAL VALUE BASED

Q. 1 [5]

order in zero $\mathrm{T}_{50}=\frac{6.93}{2 \times 0.693}$
Q. 2 [8]
Q. 3 [0]

For zero order reaction $t_{1 / 2} \propto a$

Q. 4 [2]

$\mathrm{t}_{x \%}$ of a first order reaction is constant
Q. 5 [2]
Q. 6 [4]
$\mathrm{T}_{1} \mathrm{~T}_{2}=\frac{\mathrm{Ea}}{0.0693 \mathrm{R}}$
$\mathrm{T}_{2}-\mathrm{T}_{1}=10$
$2.303 \log \frac{\mathrm{~K}_{35}}{\mathrm{~K}_{25}}=\frac{\mathrm{Ea}}{\mathrm{R}} \times\left[\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right]$
$2.303 \log \frac{\mathrm{~K}_{35}}{\mathrm{~K}_{25}}=\frac{\mathrm{Ea}}{\mathrm{R}} \times \frac{10 \times \mathrm{R} \times 0.0693}{\mathrm{Ea}}=0.0693$
$\log \frac{\mathrm{K}_{35}}{\mathrm{~K}_{25}}=\frac{0.693}{2.303}=0.3010$
$\frac{\mathrm{K}_{35}}{\mathrm{~K}_{25}}=2 \Rightarrow$ So,$\frac{\mathrm{K}_{45}}{\mathrm{~K}_{25}}=4$
Q. 7 [0]

Half life 500 for all concentrations of sugar.
Half life is independent of the conc. of the sugar. So reaction is Ist order W.R.T. sugar
For H^{+}conc.
$\frac{t_{1}}{t_{2}}=\left(\frac{a_{2}}{a_{1}}\right)^{n-1}$
$\frac{500}{50}=\left(\frac{10^{-6}}{10^{-5}}\right)^{n-1}$
$\therefore n=0$
Q. 8 [2]

No of $\mathrm{t} 1 / 2$ of A in 2 days $=4$
No of $t 1 / 2$ of B in 2 days $=3$
$\mathrm{A}_{\mathrm{t}}=\frac{1}{4}, \mathrm{~B}_{\mathrm{t}}=\frac{1}{8}$
$\mathrm{A}: \mathrm{B}=2$
Q. 9 [2]
$\mathrm{t}_{1 / 2}=20 \mathrm{~min}, \mathrm{t}^{\prime}{ }_{1 / 2}=10 \min \&[\mathrm{~A}]_{0}=2[\mathrm{~A}]_{0}$
$\because \mathrm{t}_{1 / 2} \alpha \frac{1}{[\mathrm{~A}]_{0}^{\mathrm{n}-1}} \Rightarrow \frac{\mathrm{t}^{\prime}}{\mathrm{t}_{1 / 2}}=\left[\frac{[\mathrm{A}]_{0}^{\prime}}{[\mathrm{A}]_{0}}\right]^{\mathrm{n}-1}$
or
$\frac{20}{10}=\left[\frac{2 \times[\mathrm{A}]_{0}^{\mathrm{n}-1}}{\left[\mathrm{~A}_{0}\right]}\right]^{\mathrm{n}-1} \rightarrow 2=2^{\mathrm{n}-1} \rightarrow \mathrm{n}-1=1 \Rightarrow \mathrm{n}=2$
Q. $10 \mathrm{~T}=306 \mathrm{~K}$
$\mathrm{K}_{2}=\frac{0.693}{2 \times 3600} \mathrm{Sec}^{-1}$
$\mathrm{K}_{1}=3.46 \times 10^{-5} \mathrm{sec}^{-1}$
We have $\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{100 \times 10^{3}}{2.303 \mathrm{R}}\left[\frac{1}{298}-\frac{1}{\mathrm{~T}}\right]$
$\mathrm{T}=306 \mathrm{~K}$

KVPY

PREVIOUS YEAR'S
Q. 1 (B)

$$
\frac{0.693}{t_{1 / 2}}=\frac{2.303}{2 \times 60} \log \frac{\alpha}{\alpha / 16}
$$

$\mathrm{t}_{1 / 2}=30 \mathrm{~min}$
Q. 2 (A)
$K=\frac{A_{0}-A_{t}}{t}$
$K=\frac{A_{0}}{2 t_{1 / 2}}$
$t_{1 / 2}=\frac{A_{0}}{2 K}$ Zero order
$t_{1 / 2} \propto$ initial concentration so double times
Q. 3
(B)
Q. 4 (4)
$\mathrm{r}=\mathrm{K}[\mathrm{X}]^{\mathrm{x}}[\mathrm{Y}]^{\mathrm{y}}$
Total order $=\mathrm{n}=\mathrm{x}+\mathrm{y}$
By exp. (1) \& (2)
$\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\mathrm{K}[.25]^{\mathrm{x}}[.25]^{\mathrm{y}}}{\mathrm{K}[.50]^{\mathrm{x}}[.25]^{\mathrm{y}}}=\frac{1.0 \times 10^{-6}}{4.0 \times 10^{-6}}$
$\frac{1}{(2)^{x}}=\frac{1}{4}, x=2$
By exp. (1) \& (3)
$\frac{\mathrm{r}_{1}}{\mathrm{r}_{3}}=\frac{\mathrm{K}[.25]^{\mathrm{x}}[.25]^{\mathrm{y}}}{\mathrm{K}[.25]^{\mathrm{x}}[.50]^{\mathrm{y}}}=\frac{1 \times 10^{-6}}{8 \times 10^{-6}}$
$\frac{1}{(2)^{\mathrm{y}}}=\frac{1}{8}, \mathrm{y}=3$
So Total order $=2+3=5$
$K=A e^{-} \frac{E_{a}}{R T}$
In $K=\operatorname{In} A-\frac{E_{a}}{R T}$
Q. 6
$\mathrm{t}_{1 / 2} \propto \frac{1}{\mathrm{a}^{\mathrm{n}-1}}$
for zero order reaction $\mathrm{n}=0$
so $\mathrm{t}_{1 / 2} \propto \mathrm{a}$
so
$\frac{\left(\mathrm{t}_{1 / 2}\right)_{1}}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}$
$\frac{.2}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\frac{\left[\mathrm{A}_{0}\right]}{2[\mathrm{~A}]_{0}}$
$\mathrm{t}_{1 / 2}=.4 \mathrm{sec}$
Q. 7
Q. 8
Q. 9
(D)
$\mathrm{Ct}=\mathrm{C}_{0} \mathrm{e}^{\mathrm{ekt}}$
$\mathrm{Ct}=\mathrm{C}_{0}-\mathrm{kt} ;$ slope $=-\mathrm{k}$
(A)

For plot between $\operatorname{In} \mathrm{k}$ v/s 1/T y-intercept is $\operatorname{In} \mathrm{A}$
$\&$ slope is $\frac{-E_{a}}{R}$
therefore ; $\mathrm{E}_{\mathrm{II}}<\mathrm{E}_{\mathrm{I}}$ and $\mathrm{A}_{\mathrm{I}}>\mathrm{A}_{\mathrm{II}}$
Q. 10 (C)
$\mathrm{K}=\mathrm{Ae}^{-\mathrm{E} / \mathrm{RT}^{2}}$
$\mathrm{T} \rightarrow \infty \quad \mathrm{k}=\mathrm{A}$
Q. 11 (D)

$$
\begin{aligned}
& \mathrm{t}_{1 / 2}=1 \mathrm{hr} \\
& \mathrm{t}_{87.5}=\frac{2.303}{\mathrm{k}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}} \\
& =\frac{2.303}{\frac{0.693}{1}} \log \frac{\mathrm{a}}{\mathrm{a}-.875} \\
& =\frac{2.303}{0.693} \log 8 \\
& =\frac{2.303}{0.693} \times 3 \times .3010 \\
& =3
\end{aligned}
$$

Q. 12 (B)
no. of α-particel $=\frac{232-208}{4}=6$
no. of β-particel $=4$
Q. 13 (D)

$\% \mathrm{Th}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{T}}}=\frac{2}{100}$
$\% \mathrm{Ac}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{\mathrm{T}}}=\frac{98}{100}$
$\therefore \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{2}{98}$
$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}$
$\frac{0.693}{22}=\mathrm{R}_{1}+\frac{98}{2} \mathrm{R}_{1}$
$\therefore \mathrm{R}_{1}=6.3 \times 10^{4}$
Q. 14 (A)
$\log _{10} \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=\frac{209 \times 10^{3}}{2.303 \times 8.314}\left[\frac{1}{300}-\frac{1}{\mathrm{~T}}\right]$
$9.16 \times 10^{-5}=3.33 \times 10^{-3}-\frac{1}{\mathrm{~T}}$
$\mathrm{T}=308.4 \mathrm{~K}$ or $35^{\circ} \mathrm{C}=\mathrm{X}$
Q. 15 (B)
$X \underset{\mathrm{k}_{\mathrm{b}}}{\stackrel{\mathrm{k}_{\mathrm{f}}}{\rightleftharpoons}} \mathrm{Y}, \mathrm{k}_{\mathrm{eq}}=\frac{\mathrm{k}_{\mathrm{r}}}{\mathrm{k}_{\mathrm{b}}}=2$

at equation concentration of $[\mathrm{Y}]>[\mathrm{X}] \Rightarrow[\mathrm{Y}]=2[\mathrm{X}]$
Q. 16 (A)

For zero order reaction
$C_{t}=C_{0}-k t$
Graph of $\mathrm{C}_{\mathrm{t}} \mathrm{Vst}$ is

Q. 17 (C)
$K=A e^{-\frac{E a}{R T}}$
For $1^{\text {st }}$ order reactime unit of $\mathrm{k}=$ time $^{-1}$ and for A unit is same as unit of K .
Q. 18 (D)

$$
\begin{aligned}
2 \mathrm{~N}_{2} \mathrm{O}_{5} & \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2} \\
\text { Rate }= & -\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]=\frac{1}{4} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{NO}_{2}\right]=\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{O}_{2}\right] \\
& -\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]=2\left[\frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{O}_{2}\right]\right]
\end{aligned}
$$

So rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is twice the O_{2} production rate.
Q. 19 (C)

$$
\mathrm{A} \quad \rightleftharpoons \quad \mathrm{~B}
$$

$$
\begin{array}{lll}
\mathrm{t}=0 & & {\left[\mathrm{~A}_{0}\right]} \\
\mathrm{t}=\mathrm{t}
\end{array} \quad \begin{array}{lll}
{\left[\mathrm{A}_{0}\right]-\mathrm{x}} & \mathrm{x} \\
& =\mathrm{A}_{\mathrm{t}} & \\
\mathrm{t}=\mathrm{t}_{\mathrm{eq}} & \begin{array}{ll}
{\left[\mathrm{A}_{0}\right]-\mathrm{x}_{\text {eq }}} \\
& =\mathrm{A}_{\text {eq }}
\end{array} & \mathrm{x}_{\text {eq }}
\end{array}
$$

Given at time $\mathrm{t}=\mathrm{tA}_{\mathrm{t}}=\frac{\left(\mathrm{A}_{0}+\mathrm{A}_{\mathrm{aq}}\right)}{2}$

$$
\text { and } \mathrm{x}_{\mathrm{eq} .}=\mathrm{A}_{0}-\mathrm{A}_{\mathrm{eq}}
$$

Now, $\mathrm{t}=\frac{1}{\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}} \ln \left(\frac{\mathrm{x}_{\mathrm{e}}}{\mathrm{x}_{\mathrm{e}-\mathrm{x}}}\right)=\left(\frac{\ln 2}{\mathrm{k}_{\mathrm{f}}+\mathrm{k}_{\mathrm{b}}}\right)$

Q. 20 (D)

${ }_{\mathrm{P}}^{\mathrm{Q}} \mathrm{X}+{ }_{-1}^{0} \beta \rightarrow{ }_{\mathrm{P}-1}^{\mathrm{Q}} \mathrm{Y}$
X and Y has same mass number, hence they are isotones.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (4)

Fact Based
${ }_{1} \mathrm{H}^{3}$ (tritium) is radio active
Its $\frac{\mathrm{n}}{\mathrm{p}}=\frac{2}{1}$ (Higher), Hence
It emits β particle
Q. 2 [14]

Fraction $(f)=e^{-\frac{E_{a}}{R T}}$
$=e^{-\frac{80.3 \times 10^{3}}{8.314 \times 700}}$
$=\mathrm{e}^{-13.8}$
$=\mathrm{e}^{-14}$
Q. $3 \quad[50 \mathrm{~kJ} / \mathrm{mole}]$
$\Delta \mathrm{H}=\mathrm{E}_{\mathrm{a}}, \mathrm{f}-\mathrm{E}_{\mathrm{a}, \mathrm{b}}$
$-20=30-\mathrm{Ea}, \mathrm{b}$
$\mathrm{E}_{\mathrm{a}, \mathrm{b}}=50 \mathrm{~kJ} / \mathrm{mole}$
Q. 4 [51.74]
$\log _{10} \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\log _{10} 5=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \times 8.314}\left[\frac{1}{300}-\frac{1}{325}\right]$
$0.693=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \times 8.314} \times \frac{25}{300 \times 325}$
$\mathrm{E}_{\mathrm{a}}=51.74 \mathrm{~kJ} / \mathrm{mole}$

Q. $5 \quad[526.3 \mathrm{~K}]$

$\log _{10} \mathrm{k}=\log _{10} \mathrm{~A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
Slope $=\frac{-E_{a}}{2.303 R T}=-10000$
$\log _{10}=\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}} \times\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$

$$
\log _{10} \frac{10^{-4}}{10^{-5}}=10000 \times\left[\frac{1}{500}-\frac{1}{\mathrm{~T}}\right]
$$

$$
1=10000 \times\left[\frac{1}{500}-\frac{1}{\mathrm{~T}}\right]
$$

$$
\frac{1}{10000}=\frac{1}{500}-\frac{1}{\mathrm{~T}}
$$

$$
\frac{1}{\mathrm{~T}}=\frac{1}{500}-\frac{1}{10000}
$$

$$
=\frac{20-1}{10,000}=\frac{19}{10,000}
$$

$$
\mathrm{T}=\frac{10,000}{19}=526.3 \mathrm{~K}
$$

Q. 6 [1535.3]

$$
\begin{aligned}
& t=\frac{2.303}{K} \log \frac{100}{100-x} \\
& =\frac{2.303}{3.3 \times 10^{-4}} \log \frac{100}{100-40} \\
& =\frac{2.303}{3.3 \times 10^{-4}} \times 0.22 \\
& =1535.3 \mathrm{sec} .
\end{aligned}
$$

Q. 7 [81]

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2^{\mathrm{n}}} \quad \mathrm{n}=\frac{\text { time given }}{\mathrm{t}_{1 / 2}}=\frac{9 \mathrm{hr}}{3.33 \mathrm{hr}}=2.7 \\
& =\frac{1}{2^{2.7}} \\
& \log \frac{1}{\mathrm{f}}=\log 2^{2.7}=2.7 \times 0.81 \\
& 100 \times \log _{10}\left(\frac{1}{\mathrm{f}}\right)=100 \times 0.81=81 \\
& \text { Ans. } 81
\end{aligned}
$$

Q. 8 [10]

$\frac{\mathrm{t}_{99.9 \%}}{\mathrm{t}_{50 \%}}=\frac{\frac{1}{\mathrm{~K}} \ln \frac{100}{0.1}}{\frac{1}{\mathrm{~K}} \ln 2}$
$=\frac{\ln 1000}{\ln 2} \times \mathrm{t}_{50 \%}$
$=\frac{3 \ln 10}{\ln 2} \times 1$
$=\frac{3 \times 2.3}{0.69} \quad 10$

Q. 9 [3]

$\mathrm{r}=\mathrm{k}[\mathrm{NO}] \mathrm{m}\left[\mathrm{Cl}_{2}\right] \mathrm{n}$
$=\mathrm{k}(0.1) \mathrm{m}(0.1) \mathrm{n}$
$=\mathrm{k}(0.1) \mathrm{m}(0.2) \mathrm{n}$
$=\mathrm{k}(0.2) \mathrm{m}(0.2) \mathrm{n}$
$\mathrm{n}=1$
$\mathrm{m}=2$
$\mathrm{m}+\mathrm{n}=3$
Q. 10 [27]

Reaction: $2 \mathrm{~A}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$
As the reaction is elementary, the rate of reaction is r $=\mathrm{K} .[\mathrm{A}]^{2}\left[\mathrm{~B}_{2}\right]$ on reducing the volume by a factor of 3 , the concentrations of A and B_{2} will become 3 times and hence, the rate becomes $3^{2} \times 3=27$ times of initial rate.

Q. 11 [27]

Reaction: $2 \mathrm{~A}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$
As the reaction is elementary, the rate of reaction is r $=\mathrm{K} .[\mathrm{A}]^{2}\left[\mathrm{~B}_{2}\right]$ on reducing the volume by a factor of 3 , the concentrations of A and B_{2} will become 3 times and hence, the rate becomes $3^{2} \times 3=27$ times of initial rate.
Q. 12 [2]

For $1^{\text {st }}$ order reaction,
$\mathrm{K}=\frac{2.303}{\mathrm{t}} \cdot \log \frac{\left[\mathrm{A}_{0}\right]}{\left[\mathrm{A}_{\mathrm{t}}\right]}=\frac{2.303}{570 \mathrm{sec}} \cdot \log \left(\frac{100}{32}\right)$
$=1.999 \times 10^{-3} \mathrm{sec}^{-1} \approx 2 \times 10^{-3} \mathrm{sec}^{-1}$

Q. 13 [108]

$\underset{\mathrm{A}}{\text { Given } \mathrm{t}_{2}}=54 \mathrm{~min} \quad \mathrm{~T}_{1 / 2}=18 \mathrm{~min}$
$\mathrm{t}=0 \quad \mathrm{x}$ ' M
$\mathrm{t}=0 \mathrm{X}^{\prime} \mathrm{M}$
\Rightarrow To calculate $:\left[\mathrm{A}_{\mathrm{t}}\right]=16 \times\left[\mathrm{B}_{\mathrm{t}}\right] \ldots .(1)$ time $=$?
\Rightarrow For I order kinetic : $\left[A_{t}\right]=\frac{A_{0}}{(2)^{n}}$
$\mathrm{n} \rightarrow$ no of Half lives
\Rightarrow Now from the relation (1)
$\left[\mathrm{A}_{\mathrm{t}}\right]=16 \times\left[\mathrm{B}_{\mathrm{t}}\right]$
$\Rightarrow \frac{\mathrm{x}}{(2)^{\mathrm{n}_{1}}}=\frac{\mathrm{x}}{(2)^{\mathrm{n}_{2}}} \times \Rightarrow(2)^{\mathrm{n}_{2}}=(2)^{\mathrm{n}_{1}} \times(2)^{4}$
$\Rightarrow \mathrm{n}_{2}=\mathrm{n}_{1}+4 \quad \Rightarrow \quad \frac{\mathrm{t}}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\frac{\mathrm{t}}{\left(\mathrm{t}_{1 / 2}\right)_{1}}+4$
$\Rightarrow \mathrm{t}\left(\frac{1}{18}-\frac{1}{54}\right)=4 \Rightarrow \mathrm{t}=\frac{4 \times 18 \times 54}{36}$
$\Rightarrow t=108 \mathrm{~min}$
Q. 14 [10]
$\mathrm{K}_{300}=10^{-4} \quad \mathrm{~K}_{200}=$?
$\mathrm{E}_{\mathrm{a}}=11.488 \mathrm{KJ} / \mathrm{moleR}=8.314 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
so $\ln \left(\frac{\mathrm{K}_{300}}{\mathrm{~K}_{200}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{200}-\frac{1}{300}\right)$
$\ln \left(\frac{\mathrm{K}_{300}}{\mathrm{~K}_{200}}\right)=\frac{11.488 \times 1000 \times 100}{8.314 \times 200 \times 300}$
$=2.303$
$=\ell \mathrm{n} 10$
so $\frac{\mathrm{K}_{300}}{\mathrm{~K}_{200}}=10$
$\mathrm{K}_{200}=\frac{1}{10} \times \mathrm{K}_{300}=10^{-4}$
$=10 \times 10^{-5} \mathrm{sec}^{-1}$
Q. 15 [464]
Q. 16 [19]
Q. 17 [78]
Q. 18 [68]
Q. 19 [12]
Q. 20 [600 to 700]
Q. 21 (3)
Q. 22 (4)
Q. 23 (2)
Q. 24 [7]
Q. 25 [1]
Q. 26 [106]
Q. 27 [0.02]
Q. 28 (1)
Q. 29 [16]
Q. 30 [4]
Q. 31 [2]
Q. 32 [45]
Q. 33 [47]
Q. 34 (3)
Q. 35 [40]
Q. 36 [7]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (ABD)
$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$
$\mathrm{t}_{1 / 2} \propto \frac{1}{\mathrm{~K}}, \mathrm{~K} \uparrow$ on increasing T .
After eight half lives,
$\mathrm{C}=\frac{\mathrm{C}_{0}}{2^{8}} \Rightarrow \%$ completion $=\frac{\mathrm{C}_{0}-\frac{\mathrm{C}_{0}}{2^{8}}}{\mathrm{C}_{0}} \times 100=99.6 \%$
Q. 7 (A,B)
(A) E_{a} is independent of steric factor
Q. $8 \quad[2.30]$

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \xrightarrow{\Delta} 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

at constant V, T
$\begin{array}{lll}\mathrm{t}=0 & 1 \\ \mathrm{t}=\mathrm{y} \times 10^{3} \mathrm{sec} & (1-2 \mathrm{P}) & 2 \mathrm{P}\end{array}$
P

$$
\mathrm{P}_{\mathrm{T}}=(1+\mathrm{P})=1.45
$$

$$
\mathrm{P}=0.45 \mathrm{~atm}
$$

$(2 \mathrm{~K}) \mathrm{t}=2.303 \log \left(\frac{1}{1-2 \mathrm{P}}\right)$
$\left(2 \times 5 \times 10^{-4}\right) \times \mathrm{y} \times 10^{3}=2.303 \log \frac{1}{0.1}$
$y=2.303=2.30$
Q. $9 \quad[6.75]$
$\mathrm{r}=\mathrm{K}[\mathrm{A}]^{\mathrm{n}_{1}}[\mathrm{~B}]^{\mathrm{n}_{2}}[\mathrm{C}]^{\mathrm{n}_{3}}$
From table
$\mathrm{n}_{1}=1$
$\mathrm{n}_{2}=0$
$\mathrm{n}_{3}=1$
$\mathrm{r}=\mathrm{K}[\mathrm{A}][\mathrm{C}]$
From Exp - 1
$6 \times 10^{-5}=\mathrm{K} \times 0.2 \times 0.1$
$\mathrm{K}=3 \times 10^{-3}$
$\mathrm{r}=\left(3 \times 10^{-3}\right) \times 0.15 \times 0.15$
$=6.75 \times 10^{-5}$
$\mathrm{Y} \times 10^{-5}$
$Y=6.75$
Q. 12 (B, C, D)
Q. 10 (A)

$\begin{array}{lll}\mathrm{t}=0 & \mathrm{P}_{0} & 0 \\ \mathrm{t} & \mathrm{P} & \mathrm{P}_{0}-\mathrm{P}\end{array}$
rate $=\mathrm{k}\left[\chi^{\mathrm{Br}}\right]$
$\ln \frac{P_{0}}{P}=k t$
$\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}$
$\ln \frac{\mathrm{P}}{\mathrm{P}_{0}}=-\mathrm{kt}$
$\frac{[\mathrm{Q}]}{[\mathrm{P}]_{0}}=\frac{\left[\mathrm{P}_{0}\right]-[\mathrm{P}]}{\left[\mathrm{P}_{0}\right]}=1-\frac{[\mathrm{P}]}{\left[\mathrm{P}_{0}\right]}=1-\mathrm{e}^{-\mathrm{kt}}$
Q. $11 \quad$ [1.20]

Initial moles of $\mathrm{U}^{238}=\frac{68 \times 10^{-6}}{238}=\mathrm{x}$
Moles of U^{238} decayed in three half-lives $\frac{7}{8} \mathrm{x}$
In decay from U^{238} to Pb^{206}, each U^{238} atom decays and produces 8α-particles and hence, total number of α particles emitted out
$=\left(\frac{7}{8} \mathrm{x}\right) \times 8 \times \mathrm{N}_{\mathrm{A}}$
$=7 \times \frac{68 \times 10^{-6}}{238} \times 6.022 \times 10^{23}$
$=1.204 \times 10^{18}$

$$
\begin{aligned}
& 2 \mathrm{x}+\mathrm{y} \rightarrow \mathrm{p} \\
& \mathrm{t}=0 \quad 2 \quad 1 \\
& \mathrm{t}=50 \mathrm{~s}(2-1)(1-0.5) \quad 0.5 \\
& -\frac{1}{2} \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{k}[\mathrm{x}]^{-1} \\
& -\frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{k}[\mathrm{x}]^{1} \\
& 2 \mathrm{k}=\frac{\ln 2}{50}=2 \mathrm{k}[\mathrm{x}]^{1} \Rightarrow \mathrm{k}=\frac{\ln 2}{100} \\
& \text { At } \quad 50 \sec \frac{-\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{k} \times(1)^{1}=\frac{\ln 2}{50} \\
& \text { At } \quad 100 \mathrm{sec}-\frac{1}{2} \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{-\mathrm{dy}}{\mathrm{dt}} \\
& \Rightarrow-\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\ln 2}{100} \times \frac{1}{2}\left\{\frac{-\mathrm{dy}}{\mathrm{dt}}=\mathrm{k}[\mathrm{x}]^{1}\right\}
\end{aligned}
$$

